Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629115

RESUMEN

Respiratory syncytial virus (RSV) is known to cause annual epidemics of respiratory infections; however, the lack of specific treatment options for this disease poses a challenge. In light of this, there has been a concerted effort to identify small molecules that can effectively combat RSV. This article focuses on the mechanism of action of compound K142, which was identified as a primary screening leader in the earlier stages of the project. The research conducted demonstrates that K142 significantly reduces the intensity of virus penetration into the cells, as well as the formation of syncytia from infected cells. These findings show that the compound's interaction with the surface proteins of RSV is a key factor in its antiviral activity. Furthermore, pharmacological modeling supports that K142 effectively interacts with the F-protein. However, in vivo studies have shown only weak antiviral activity against RSV infection, with a slight decrease in viral load observed in lung tissues. As a result, there is a need to enhance the bioavailability or antiviral properties of this compound. Based on these findings, we hypothesize that further modifications of the compound under study could potentially increase its antiviral activity.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Antivirales/farmacología , Disponibilidad Biológica
2.
Molecules ; 28(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985645

RESUMEN

Respiratory syncytial virus (RSV) causes annual epidemics of respiratory infection. Usually harmless to adults, the RSV infection can be dangerous to children under 3 years of age and elderly people over 65 years of age, often causing serious problems, even death. At present, there are no vaccines and specific chemotherapeutic agents for the treatment of this disease, so the search for low-molecular weight compounds to combat RSV is a challenge. In this work, we have shown, for the first time, that monoterpene-substituted arylcoumarins are efficient RSV replication inhibitors at low micromolar concentrations. The most active compound has a selectivity index of about 200 and acts most effectively at the early stages of infection. The F protein of RSV is a potential target for these compounds, which is also confirmed by molecular docking and molecular dynamics simulation data.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Humanos , Preescolar , Anciano , Simulación del Acoplamiento Molecular , Anticuerpos Antivirales , Proteínas Virales de Fusión , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Replicación Viral
3.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408661

RESUMEN

Respiratory syncytial virus infection (RSVI) is an acute medical and social problem in many countries globally. Infection is most dangerous for infants under one year old and the elderly. Despite its epidemiological relevance, only two drugs are registered for clinical use against RSVI: ribavirin (approved in a limited number of countries due to side effects) and palivizumab (Synagis), which is intended only for the prevention, but not the treatment, of infection. Currently, various research groups are searching for new drugs against RSV, with three main areas of research: small molecules, polymeric drugs (proteins and peptides), and plant extracts. This review is devoted to currently developed protein and peptide anti-RSV drugs.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Infecciones del Sistema Respiratorio , Anciano , Antivirales/uso terapéutico , Humanos , Lactante , Palivizumab/uso terapéutico , Péptidos/farmacología , Péptidos/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/tratamiento farmacológico
4.
Arch Virol ; 166(7): 1965-1976, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33983502

RESUMEN

A series of compounds containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment were evaluated for their antiviral activity against influenza A virus strain A/Puerto Rico/8/34 (H1N1) in vitro. The most potent antiviral compound proved to be a quaternary ammonium salt based on (-)-borneol, 10a. In in vitro experiments, compound 10a inhibited influenza A viruses (H1, H1pdm09, and H3 subtypes), with an IC50 value of 2.4-16.8 µM (depending on the virus), and demonstrated low toxicity (CC50 = 1311 µM). Mechanism-of-action studies for compound 10a revealed it to be most effective when added at the early stages of the viral life cycle. In direct haemolysis inhibition tests, compound 10a was shown to decrease the membrane-disrupting activity of influenza A virus strain A/Puerto Rico/8/34. According to molecular modelling results, the lead compound 10a can bind to different sites in the stem region of the viral hemagglutinin.


Asunto(s)
Alcanos/farmacología , Compuestos de Amonio/farmacología , Canfanos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Sales (Química)/farmacología , Animales , Antivirales/farmacología , Línea Celular , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/tratamiento farmacológico
5.
Org Biomol Chem ; 19(45): 9925-9935, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34735561

RESUMEN

Heteroanalogs of ascidian alkaloids have been synthesized, and for the first time 10 different types of saturated carbo- and heteroannulated pyridones have been obtained. A new method for the formation of decahydro[1,3]oxazolo[2,3-j]quinoline and octahydro-5H-cyclopenta[b][1,3]oxazolo[3,2-a]pyridine was proposed. The synthesis of these heterocycles is based on the three-component cyclization of trifluoroacetoacetic ester and cycloketones with 1,2- and 1,3-dinucleophiles. It was found that reactions with amino alcohols are distinguished by the possibility of isolating carbocyclopyridones of various degrees of saturation. The diastereomeric structure of the synthesized heterocycles has been studied, and the mechanism of their formation has been proposed. Antitumor, anti-influenza and analgesic agents have been found among the synthesized compounds.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Alcaloides/síntesis química , Animales , Ciclización , Estructura Molecular , Urocordados
6.
Molecules ; 26(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34946573

RESUMEN

Respiratory syncytial virus (RSV) is a critical cause of infant mortality. However, there are no vaccines and adequate drugs for its treatment. We showed, for the first time, that O-linked coumarin-monoterpene conjugates are effective RSV inhibitors. The most potent compounds are active against both RSV serotypes, A and B. According to the results of the time-of-addition experiment, the conjugates act at the early stages of virus cycle. Based on molecular modelling data, RSV F protein may be considered as a possible target.


Asunto(s)
Antivirales/farmacología , Cumarinas/farmacología , Monoterpenos/farmacología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Antivirales/química , Cumarinas/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Monoterpenos/química , Replicación Viral/efectos de los fármacos
7.
Bioorg Med Chem Lett ; 29(23): 126745, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31668423

RESUMEN

A chemical library was constructed based on the scaffold of camphecene (2-(E)-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene-aminoethanol). The modifications included introduction of mono-and bicyclic heterocyclic moieties in place of the terminal hydroxyl group of camphecene. All compounds were tested for cytotoxicity and anti-viral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells. Among 15 tested compounds 11 demonstrated a selectivity index (SI) higher than 10 and IC50 values in the micromolar range. The antiviral activity and toxicity were shown to strongly depend on the nature of the heterocyclic substituent. Compounds 2 and 14 demonstrated the highest virus-inhibiting activity with SIs of 106 and 183, and bearing pyrrolidine and piperidine moieties, correspondingly. Compound 14 was shown to interfere with viral reproduction at early stages of the viral life cycle (0-2 h post-infection). Taken together, our data suggest potential of camphecene derivatives in particular and camphor-based imine derivatives in general as effective anti-influenza compounds.


Asunto(s)
Alcanfor/análogos & derivados , Etanolaminas/síntesis química , Gripe Humana/tratamiento farmacológico , Alcanfor/síntesis química , Alcanfor/química , Etanolaminas/química , Humanos , Relación Estructura-Actividad
8.
Bioorg Med Chem Lett ; 28(11): 2061-2067, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29716780

RESUMEN

A set of (-)-isopulegol derived octahydro-2H-chromen-4-ols was synthesized and evaluated in vitro for antiviral activity against panel of reference influenza virus strains differing in subtype, origin (human or avian) and drug resistance. Compound (4R)-11a produced via one-pot synthesis by interaction between (-)-isopulegol and acetone was found to exhibit an outstanding activity against a number of H1N1 and H2N2 influenza virus strains with selectivity index more than 1500. (4R)-11a was shown to be most potent at early stages of viral cycle. Good correlation between anti-viral activity and calculated binding energy to hemagglutinin TBHQ active site was demonstrated.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Terpenos/farmacología , Antivirales/síntesis química , Antivirales/química , Monoterpenos Ciclohexánicos , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Terpenos/síntesis química , Terpenos/química
9.
Arch Virol ; 163(8): 2121-2131, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29633078

RESUMEN

Viral respiratory infections are raising serious concern globally. Asian medicinal plants could be useful in improving the current treatment strategies for influenza. The present study examines the activity of five plants from Bangladesh against influenza virus. MDCK cells infected with influenza virus A/Puerto Rico/8/34 (H1N1) were treated with increasing concentrations of ethyl acetate extracts, and their cytotoxicity (CC50), virus-inhibiting activity (IC50), and selectivity index (SI) were calculated. The ethyl acetate extract of fruits of Embelia ribes Burm. f. (Myrsinaceae) had the highest antiviral activity, with an IC50 of 0.2 µg/mL and a SI of 32. Its major constituent, embelin, was further isolated and tested against the same virus. Embelin demonstrated antiviral activity, with an IC50 of 0.3 µM and an SI of 10. Time-of-addition experiments revealed that embelin was most effective when added at early stages of the viral life cycle (0-1 h postinfection). Embelin was further evaluated against a panel of influenza viruses including influenza A and B viruses that were susceptible or resistant to rimantadine and oseltamivir. Among the viruses tested, avian influenza virus A/mallard/Pennsylvania/10218/84 (H5N2) was the most susceptible to embelin (SI = 31), while A/Aichi/2/68 (H3N2) virus was the most resistant (SI = 5). In silico molecular docking showed that the binding site for embelin is located in the receptor-binding domain of the viral hemagglutinin. The results of this study provide evidence that E. ribes can be used for development of a novel alternative anti-influenza plant-based agent.


Asunto(s)
Antivirales/farmacología , Embelia/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/virología , Extractos Vegetales/farmacología , Antivirales/química , Benzoquinonas/química , Benzoquinonas/farmacología , Humanos , Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Extractos Vegetales/química
10.
Bioorg Med Chem Lett ; 27(10): 2181-2184, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28366530

RESUMEN

A series of seventeen tetrazole derivatives of 1,7,7-trimethyl-[2.2.1]bicycloheptane were synthesized using click chemistry methodology and characterized by spectral data. Studies of cytotoxicity and in vitro antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells of the compounds obtained were performed. The structure-activity relationship analysis suggests that to possess virus-inhibiting activity, the compounds of this group should bear oxygen atom with a short linker (C2-C4), either as a hydroxyl group (18, 19, 29), keto-group (21) or as a part of a heterocycle (24). These compounds demonstrated low cytotoxicity along with high anti-viral activity.


Asunto(s)
Antivirales/síntesis química , Alcanfor/análogos & derivados , Etanolaminas/química , Animales , Antivirales/química , Antivirales/farmacología , Alcanfor/síntesis química , Alcanfor/química , Alcanfor/farmacología , Química Clic , Perros , Etanolaminas/síntesis química , Etanolaminas/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 24(21): 5158-5161, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591012

RESUMEN

The antiviral activity of 4-hydroxy-hexahydro-2H-chromenes and 4-fluorine-hexahydro-2H-chromenes with an aromatic substituent, synthesized from monoterpene (-)-verbenone, was studied for the first time. Five of 11 (45 per cent) of 4-hydroxy-hexahydro-2H-chromene-type compounds have been found to exhibit antiviral activity against influenza A virus of subtype H1N1pdm09. Although a portion of active compounds among 4-fluorine-containing series was fewer, just compound 5i that contains a fluorine substituent exhibited more potent anti-influenza activity along with low cytotoxicity. Thus two new promising types of antiviral compounds were identified.


Asunto(s)
Antivirales/farmacología , Benzopiranos/farmacología , Virus de la Influenza A/efectos de los fármacos , Monoterpenos/farmacología , Antivirales/síntesis química , Antivirales/química , Benzopiranos/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Monoterpenos/síntesis química , Monoterpenos/química , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 22(24): 6826-36, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25464881

RESUMEN

Influenza virus is serious human pathogen leading to high morbidity and mortality all over the world. Due to high rate of mutation, it is able to fast development of drug resistance that makes necessary to search novel antivirals with broad range and alternative targets. In the present study we describe synthesis and anti-viral activity of novel derivatives of usnic acid (2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione). It is shown that anti-viral activity of usnic acid can be increased by side moieties introduction. The modification with chalcones appeared to be the most effective. Our study revealed that (-)-usnic acid exhibited higher antiviral activity than its (+)-enantiomer, but in the pairs of enantiomer derivatives such as enamines, pyrazoles and chalcones, the (+)-enantiomers were more potent inhibitors of the virus. For other groups of compounds the inhibiting activities of the enantiomers were comparable. Further optimization of the structure could therefore result in development of novel anti-influenza compound with alternative target and mechanism of virus-inhibiting action.


Asunto(s)
Antivirales/química , Benzofuranos/química , Benzofuranos/farmacología , Virus de la Influenza A/fisiología , Animales , Antivirales/síntesis química , Antivirales/farmacología , Benzofuranos/síntesis química , Supervivencia Celular/efectos de los fármacos , Perros , Humanos , Células de Riñón Canino Madin Darby , Estereoisomerismo , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
13.
Nat Prod Res ; 37(12): 1954-1960, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35975755

RESUMEN

A set of 12 abietane diterpene derivatives have been synthesised by the Ugi-four component reaction (Ugi-4CR) and tested for cytotoxicity and activity against influenza virus A/Puerto Rico/8/34 (H1N1) and SARS-CoV-2 pseudovirus. Five dipeptide derivatives demonstrated a selectivity index (SI) higher than 10 and IC50 values from 2 to 32 µM against influenza virus. Compound 11 was found to be a lead with SI of 200, and time-of-addition experiments showed the viral entry into the cell and the binding of the virus to the receptor as a possible target. Compound 7 was the only one showed weak anti-SARS-CoV-2 activity with EC50 value of 80.96 µM. Taken together, our data suggest the potency of diterpene acids-Ugi products as new effective anti-influenza compounds.


Asunto(s)
COVID-19 , Diterpenos , Subtipo H1N1 del Virus de la Influenza A , Humanos , SARS-CoV-2 , Abietanos/farmacología , Abietanos/química
14.
Viruses ; 15(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37376593

RESUMEN

Hyperactivation of the immune system remains a dramatic, life-threatening complication of viral and bacterial infections, particularly during pneumonia. Therapeutic approaches to counteract local and systemic outbreaks of cytokine storm and to prevent tissue damage remain limited. Cyclin-dependent kinases 8 and 19 (CDK8/19) potentiate transcriptional responses to the altered microenvironment, but CDK8/19 potential in immunoregulation is not fully understood. In the present study, we investigated how a selective CDK8/19 inhibitor, Senexin B, impacts the immunogenic profiles of monocytic cells stimulated using influenza virus H1N1 or bacterial lipopolysaccharides. Senexin B was able to prevent the induction of gene expression of proinflammatory cytokines in THP1 and U937 cell lines and in human peripheral blood-derived mononuclear cells. Moreover, Senexin B substantially reduced functional manifestations of inflammation, including clustering and chemokine-dependent migration of THP1 monocytes and human pulmonary fibroblasts (HPF).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Monocitos , Humanos , Células U937 , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Citocinas/metabolismo , Leucocitos Mononucleares/metabolismo
15.
Antiviral Res ; 209: 105508, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581049

RESUMEN

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Asunto(s)
COVID-19 , Perileno , Humanos , Antivirales/farmacología , Antivirales/química , Uracilo/farmacología , Perileno/farmacología , SARS-CoV-2
16.
Bioorg Med Chem Lett ; 22(23): 7060-4, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23099095

RESUMEN

Influenza is a widespread respiratory infection. Every year it causes epidemics, quickly spreading from country to country, or even pandemics, involving a significant part of the human population of the earth. Being a highly variable infection, influenza easy accumulates the resistance mutations to many antivirals. Usnic acid, a dibenzofuran originally isolated from lichens belongs to the secondary metabolites and has a broad spectrum of biological activity. In humans, it can act as an anti-inflammatory, antimitotic, antineoplasic, antibacterial, and antimycotic agent. In this work we studied for the first time the antiviral activity of usnic acid and its derivatives against the pandemic influenza virus A(H1N1)pdm09. A total of 26 compounds representing (+) and (-) isomers of usnic acid and their derivates were tested for cytotoxicity and anti-viral activity in MDCK cells by microtetrazolium test and virus yield assay, respectively. Based on the results obtained, 50% cytotoxic dose (CTD(50)) and 50% effective dose (ED(50)) and selectivity index (SI) were calculated for each compound. Eleven of them were found to have SI higher than 10 (highest value 37.3). Absolute configuration was shown to have critical significance for the anti-viral activity. With minor exceptions, in the pair of enantiomers, (-)-usnic acid was more active comparing to (+)-isomer, but its biological activity was reversed after the usnic acid was chemically modified. Based on the obtained results, derivatives of usnic acid should be considered as prospective compounds for further optimization as anti-influenza substances.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Benzofuranos/química , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antivirales/síntesis química , Benzofuranos/síntesis química , Benzofuranos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Perros , Humanos , Macrófagos/efectos de los fármacos , Células de Riñón Canino Madin Darby , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Phytochem Lett ; 51: 91-96, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35935343

RESUMEN

A chemical library was constructed based on the resin acids (abietic, dehydroabietic, and 12-formylabietic) and its diene adducts (maleopimaric and quinopimaric acid derivatives). The one-pot three-component CuCl-catalyzed aminomethylation of the abietane diterpenoid propargyl derivatives was carried out by formaldehyde and secondary amines (diethylamine, pyrrolidine, morpholine, and homopiperazine). All compounds were tested for cytotoxicity and antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells and SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells. Among 21 tested compounds, six derivatives demonstrated a selectivity index (SI) higher than 10, and their IC50 values ranged from 0.19 to 5.0 µM. Moreover, two derivatives exhibited potent anti-SARS-CoV-2 infection activity. The antiviral activity and toxicity strongly depended on the nature of the diterpene core and heterocyclic substituent. Compounds 12 and 21 bearing pyrrolidine moieties demonstrated the highest virus-inhibiting activity with SIs of 128.6 and 146.8, respectively, and appeared to be most effective when added at the time points 0-10 and 1-10 h of the viral life cycle. Molecular docking and dynamics modeling were adopted to investigate the binding mode of compound 12 into the binding pocket of influenza A virus M2 protein. Compound 9 with a pyrrolidine group at C20 of 17-formylabietic acid was a promising anti-SARS-CoV-2 agent with an EC50 of 10.97 µM and a good SI value > 18.2. Collectively, our data suggested the potency of diterpenic Mannich bases as effective anti-influenza and anti-COVID-19 compounds.

18.
ChemMedChem ; 17(20): e202200382, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36031581

RESUMEN

Nucleic acid-based detection of RNA viruses requires an annealing procedure to obtain RNA/probe or RNA/primer complexes for unwinding stable structures of folded viral RNA. In this study, we designed a protein-enzyme-free nano-construction, named four-armed DNA machine (4DNM), that requires neither an amplification stage nor a high-temperature annealing step for SARS-CoV-2 detection. It uses a binary deoxyribozyme (BiDz) sensor incorporated in a DNA nanostructure equipped with a total of four RNA-binding arms. Additional arms were found to improve the limit of detection at least 10-fold. The sensor distinguished SARS-CoV-2 from other respiratory viruses and correctly identified five positive and six negative clinical samples verified by quantitative polymerase chain reaction (RT-qPCR). The strategy reported here can be used for the detection of long natural RNA and can become a basis for a point-of-care or home diagnostic test.


Asunto(s)
COVID-19 , ADN Catalítico , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422520

RESUMEN

Respiratory syncytial virus (RSV) causes acute respiratory infections, thus, posing a serious threat to the health of infants, children, and elderly people. In this study, we have discovered a series of potent RSV entry inhibitors with the (-)-borneol scaffold. The active compounds 3b, 5a, 5c, 7b, 9c, 10b, 10c, and 14b were found to exhibit activity against RSV A strain A2 in HEp-2 cells. The most active substances, 3b (IC50 = 8.9 µM, SI = 111) and 5a (IC50 = 5.0 µM, SI = 83), displayed more potency than the known antiviral agent Ribavirin (IC50 = 80.0 µM, SI = 50). Time-of-addition assay and temperature shift studies demonstrated that compounds 3b, 5a, and 6b inhibited RSV entry, probably by interacting with the viral F protein that mediated membrane fusion, while they neither bound to G protein nor inhibited RSV attachment to the target cells. Appling procedures of molecular modeling and molecular dynamics, the binding mode of compounds 3b and 5a was proposed. Taken together, the results of this study suggest (-)-borneol esters to be promising lead compounds for developing new anti-RSV agents.

20.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36297288

RESUMEN

Perylene-based compounds are attracting significant attention due to their high broad-spectrum antiviral activity against enveloped viruses. Despite unambiguous results of in vitro studies and high selectivity index, the poor water solubility of these compounds prevented in vivo evaluation of their antiviral properties. In this work, we synthesized a series of compounds with a perylene pharmacophore bearing positively charged substituents to improve the aqueous solubility of this unique type of antivirals. Three types of charged groups were introduced: (1) quaternary morpholinium salts (3a-b); (2) a 2'-O-l-valinyl-uridine hydrochloride residue (8), and (3) a 3-methylbenzothiazolium cation (10). The synthesized compounds were evaluated based both on antiviral properties in vitro (CHIKV, SARS-CoV-2, and IAV) and on solubility in aqueous media. Compound 10 has the greatest aqueous solubility, making it preferable for pre-evaluation by intragastrical administration in a mouse model of lethal influenza pneumonia. The results indicate that the introduction of a positively charged group is a viable strategy for the design of drug candidates with a perylene scaffold for in vivo studies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda