Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 140(11): 3988-3993, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29504757

RESUMEN

Analysis of biomolecules at the single-molecule level is a great challenge in molecular diagnostics, gene profiling, and environmental monitoring. In this work, we design a smart plasmonic nanobiosensor based on individual Au@Ag core-shell nanocube (Au@Ag NC) modified with tetrahedron-structured DNA (tsDNA) for detecting microRNA 21 (miR-21) at the single-molecule level. An average localized surface plasmon resonance (LSPR) scattering spectral wavelength shift of approximately 0.4 nm can be obtained for a single miR-21 hybridization event on the nanobiosensor. In addition, the sensing mechanism of the individual Au@Ag NC is further verified by the three-dimensional finite-difference time-domain (3D-FDTD) simulations. Notably, this system not only allows the real-time detection of miR-21 with an aM level sensitivity over a large dynamic range from 1 aM to 1 nM, but also enables DNA-based logic operations as well as biomemory by exploiting miR-21, KpnI, and StuI-responsive assays. Our study opens a unique method for single-molecule detection of biomolecules and thus holds great promise in a variety of biological and biomedical applications.


Asunto(s)
Técnicas Biosensibles , ADN/química , Oro/química , Nanopartículas del Metal/química , MicroARNs/análisis , Plata/química , Tamaño de la Partícula
2.
Small ; 14(24): e1800669, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29736956

RESUMEN

A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda