Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 178(6): 1403-1420.e21, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491385

RESUMEN

Prion-like proteins can assume distinct conformational and physical states in the same cell. Sequence analysis suggests that prion-like proteins are prevalent in various species; however, it remains unclear what functional space they occupy in multicellular organisms. Here, we report the identification of a prion-like protein, Herzog (CG5830), through a multimodal screen in Drosophila melanogaster. Herzog functions as a membrane-associated phosphatase and controls embryonic patterning, likely being involved in TGF-ß/BMP and FGF/EGF signaling pathways. Remarkably, monomeric Herzog is enzymatically inactive and becomes active upon amyloid-like assembly. The prion-like domain of Herzog is necessary for both its assembly and membrane targeting. Removal of the prion-like domain impairs activity, while restoring assembly on the membrane using a heterologous prion-like domain and membrane-targeting motif can restore phosphatase activity. This study provides an example of a prion-like domain that allows an enzyme to gain essential functionality via amyloid-like assembly to control animal development.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Desarrollo Embrionario , Fosfoproteínas Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/genética , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Priones/química , Dominios Proteicos
2.
Cell ; 169(5): 836-848.e15, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525754

RESUMEN

Myriad experiences produce transient memory, yet, contingent on the internal state of the organism and the saliency of the experience, only some memories persist over time. How experience and internal state influence the duration of memory at the molecular level remains unknown. A self-assembled aggregated state of Drosophila Orb2A protein is required specifically for long-lasting memory. We report that in the adult fly brain the mRNA encoding Orb2A protein exists in an unspliced non-protein-coding form. The convergence of experience and internal drive transiently increases the spliced protein-coding Orb2A mRNA. A screen identified pasilla, the fly ortholog of mammalian Nova-1/2, as a mediator of Orb2A mRNA processing. A single-nucleotide substitution in the intronic region that reduces Pasilla binding and intron removal selectively impairs long-term memory. We posit that pasilla-mediated processing of unspliced Orb2A mRNA integrates experience and internal state to control Orb2A protein abundance and long-term memory formation.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Intrones , Memoria a Largo Plazo , Ribonucleoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Animales , Secuencia de Bases , Conducta Animal , Encéfalo/metabolismo , Condicionamiento Psicológico , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Aprendizaje , Modelos Animales , Motivación , Mutación , Isoformas de Proteínas/metabolismo , Empalme del ARN , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/metabolismo
3.
Cell ; 163(6): 1468-83, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638074

RESUMEN

Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Memoria a Largo Plazo , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Regiones no Traducidas 3' , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Ratones , Poliadenilación , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Serina Endopeptidasas/genética , Factores de Transcripción/química , Factores de Escisión y Poliadenilación de ARNm/química
5.
Annu Rev Cell Dev Biol ; 31: 149-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26407211

RESUMEN

Prions, a self-templating amyloidogenic state of normal cellular proteins such as PrP, have been identified as the basis of a number of disease states, particularly diseases of the nervous system. This finding has led to the notion that protein aggregation, namely prionogenic aggregates and amyloids, is primarily harmful for the organism. However, identification of proteins in a prion-like state that are not harmful and may even be beneficial has begun to change this perception. This review discusses when and how a prion-based protein conformational switch may be utilized to generate a sustained physiological change in response to a transient stimulus.


Asunto(s)
Priones/metabolismo , Amiloide/metabolismo , Animales , Humanos , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica
6.
Mol Cell ; 81(16): 3294-3309.e12, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34293321

RESUMEN

Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.


Asunto(s)
Adaptación Fisiológica/genética , Proteoma/genética , Estrés Fisiológico/genética , Transcriptoma/genética , Aclimatación/genética , Animales , Exposición a Riesgos Ambientales/efectos adversos , Regulación Fúngica de la Expresión Génica/genética , Calor/efectos adversos , Saccharomycetales/genética
7.
Genes Dev ; 34(23-24): 1680-1696, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184220

RESUMEN

Gene duplication and divergence is a major driver in the emergence of evolutionary novelties. How variations in amino acid sequences lead to loss of ancestral activity and functional diversification of proteins is poorly understood. We used cross-species functional analysis of Drosophila Labial and its mouse HOX1 orthologs (HOXA1, HOXB1, and HOXD1) as a paradigm to address this issue. Mouse HOX1 proteins display low (30%) sequence similarity with Drosophila Labial. However, substituting endogenous Labial with the mouse proteins revealed that HOXA1 has retained essential ancestral functions of Labial, while HOXB1 and HOXD1 have diverged. Genome-wide analysis demonstrated similar DNA-binding patterns of HOXA1 and Labial in mouse cells, while HOXB1 binds to distinct targets. Compared with HOXB1, HOXA1 shows an enrichment in co-occupancy with PBX proteins on target sites and exists in the same complex with PBX on chromatin. Functional analysis of HOXA1-HOXB1 chimeric proteins uncovered a novel six-amino-acid C-terminal motif (CTM) flanking the homeodomain that serves as a major determinant of ancestral activity. In vitro DNA-binding experiments and structural prediction show that CTM provides an important domain for interaction of HOXA1 proteins with PBX. Our findings show that small changes outside of highly conserved DNA-binding regions can lead to profound changes in protein function.


Asunto(s)
Secuencias de Aminoácidos/genética , Proteínas de Drosophila/genética , Evolución Molecular , Proteínas de Homeodominio/genética , Animales , Drosophila melanogaster/clasificación , Drosophila melanogaster/genética , Estudio de Asociación del Genoma Completo , Ratones , Modelos Moleculares , Unión Proteica/genética , Dominios Proteicos , Relación Estructura-Actividad
8.
Cell ; 148(3): 515-29, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22284910

RESUMEN

A long-standing question in the study of long-term memory is how a memory trace persists for years when the proteins that initiated the process turn over and disappear within days. Previously, we postulated that self-sustaining amyloidogenic oligomers of cytoplasmic polyadenylation element-binding protein (CPEB) provide a mechanism for the maintenance of activity-dependent synaptic changes and, thus, the persistence of memory. Here, we found that the Drosophila CPEB Orb2 forms amyloid-like oligomers, and oligomers are enriched in the synaptic membrane fraction. Of the two protein isoforms of Orb2, the amyloid-like oligomer formation is dependent on the Orb2A form. A point mutation in the prion-like domain of Orb2A, which reduced amyloid-like oligomerization of Orb2, did not interfere with learning or memory persisting up to 24 hr. However the mutant flies failed to stabilize memory beyond 48 hr. These results support the idea that amyloid-like oligomers of neuronal CPEB are critical for the persistence of long-term memory.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Secuencia de Aminoácidos , Amiloide/metabolismo , Animales , Aplysia/metabolismo , Encéfalo/metabolismo , Proteínas de Drosophila/química , Memoria , Datos de Secuencia Molecular , Neuronas/metabolismo , Mutación Puntual , Isoformas de Proteínas/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/química , Factores de Escisión y Poliadenilación de ARNm/química
9.
Proc Natl Acad Sci U S A ; 120(31): e2300475120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494397

RESUMEN

Eukaryotes organize cellular contents into membrane-bound organelles and membrane-less condensates, for example, protein aggregates. An unsolved question is why the ubiquitously distributed proteins throughout the cytosol give rise to spatially localized protein aggregates on the organellar surface, like mitochondria. We report that the mitochondrial import receptor Tom70 is involved in the localized condensation of protein aggregates in budding yeast and human cells. This is because misfolded cytosolic proteins do not autonomously aggregate in vivo; instead, they are recruited to the condensation sites initiated by Tom70's substrates (nascent mitochondrial proteins) on the organellar membrane using multivalent hydrophobic interactions. Knocking out Tom70 partially impairs, while overexpressing Tom70 increases the formation and association between cytosolic protein aggregates and mitochondria. In addition, ectopic targeting Tom70 and its substrates to the vacuole surface is able to redirect the localized aggregation from mitochondria to the vacuolar surface. Although other redundant mechanisms may exist, this nascent mitochondrial proteins-based initiation of protein aggregation likely explains the localized condensation of otherwise ubiquitously distributed molecules on the mitochondria. Disrupting the mitochondrial association of aggregates impairs their asymmetric retention during mitosis and reduces the mitochondrial import of misfolded proteins, suggesting a proteostasis role of the organelle-condensate interactions.


Asunto(s)
Proteínas Mitocondriales , Agregado de Proteínas , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transporte de Proteínas
10.
Cell ; 140(3): 421-35, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20144764

RESUMEN

Prions are proteins that can assume at least two distinct conformational states, one of which is dominant and self-perpetuating. Previously we found that a translation regulator CPEB from Aplysia, ApCPEB, that stabilizes activity-dependent changes in synaptic efficacy can display prion-like properties in yeast. Here we find that, when exogenously expressed in sensory neurons, ApCPEB can form an amyloidogenic self-sustaining multimer, consistent with it being a prion-like protein. In addition, we find that conversion of both the exogenous and the endogenous ApCPEB to the multimeric state is enhanced by the neurotransmitter serotonin and that an antibody that recognizes preferentially the multimeric ApCPEB blocks persistence of synaptic facilitation. These results are consistent with the idea that ApCPEB can act as a self-sustaining prion-like protein in the nervous system and thereby might allow the activity-dependent change in synaptic efficacy to persist for long periods of time.


Asunto(s)
Aplysia/metabolismo , Priones/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Amiloide/metabolismo , Animales , Potenciación a Largo Plazo , Polilisina/metabolismo , Priones/química , Células Receptoras Sensoriales/metabolismo , Serotonina/metabolismo , Sinapsis/metabolismo , Factores de Escisión y Poliadenilación de ARNm/química
11.
PLoS Genet ; 14(10): e1007440, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30312294

RESUMEN

Antimicrobial peptides act as a host defense mechanism and regulate the commensal microbiome. To obtain a comprehensive view of genes contributing to long-term memory we performed mRNA sequencing from single Drosophila heads following behavioral training that produces long-lasting memory. Surprisingly, we found that Diptericin B, an immune peptide with antimicrobial activity, is upregulated following behavioral training. Deletion and knock down experiments revealed that Diptericin B and another immune peptide, Gram-Negative Bacteria Binding Protein like 3, regulate long-term but not short-term memory or instinctive behavior in Drosophila. Interestingly, removal of DptB in the head fat body and GNBP-like3 in neurons results in memory deficit. That putative antimicrobial peptides influence memory provides an example of how some immune peptides may have been repurposed to influence the function of nervous system.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica/métodos , Memoria a Largo Plazo , Animales , Animales Modificados Genéticamente , Péptidos Catiónicos Antimicrobianos/metabolismo , Encéfalo/metabolismo , Regulación hacia Abajo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Interferencia de ARN
12.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967102

RESUMEN

Huntington's disease is a progressive, autosomal dominant, neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. As a result, the translated protein, huntingtin, contains an abnormally long polyglutamine stretch that makes it prone to misfold and aggregating. Aggregation of huntingtin is believed to be the cause of Huntington's disease. However, understanding on how, and why, huntingtin aggregates are deleterious has been hampered by lack of enough relevant structural data. In this review, we discuss our recent findings on a glutamine-based functional amyloid isolated from Drosophila brain and how this information provides plausible structural insight on the structure of huntingtin deposits in the brain.


Asunto(s)
Amiloide/metabolismo , Proteínas de Drosophila/metabolismo , Enfermedad de Huntington/metabolismo , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Amiloide/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Enfermedad de Huntington/genética , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética
13.
PLoS Biol ; 14(1): e1002361, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26812143

RESUMEN

Amyloids are ordered protein aggregates that are typically associated with neurodegenerative diseases and cognitive impairment. By contrast, the amyloid-like state of the neuronal RNA binding protein Orb2 in Drosophila was recently implicated in memory consolidation, but it remains unclear what features of this functional amyloid-like protein give rise to such diametrically opposed behaviour. Here, using an array of biophysical, cell biological and behavioural assays we have characterized the structural features of Orb2 from the monomer to the amyloid state. Surprisingly, we find that Orb2 shares many structural traits with pathological amyloids, including the intermediate toxic oligomeric species, which can be sequestered in vivo in hetero-oligomers by pathological amyloids. However, unlike pathological amyloids, Orb2 rapidly forms amyloids and its toxic intermediates are extremely transient, indicating that kinetic parameters differentiate this functional amyloid from pathological amyloids. We also observed that a well-known anti-amyloidogenic peptide interferes with long-term memory in Drosophila. These results provide structural insights into how the amyloid-like state of the Orb2 protein can stabilize memory and be nontoxic. They also provide insight into how amyloid-based diseases may affect memory processes.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Proteínas de Drosophila/metabolismo , Consolidación de la Memoria , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Masculino , Mutación , Oligopéptidos , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Levaduras , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genética
14.
PLoS Biol ; 12(2): e1001786, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24523662

RESUMEN

How learned experiences persist as memory for a long time is an important question. In Drosophila the persistence of memory is dependent upon amyloid-like oligomers of the Orb2 protein. However, it is not clear how the conversion of Orb2 to the amyloid-like oligomeric state is regulated. The Orb2 has two protein isoforms, and the rare Orb2A isoform is critical for oligomerization of the ubiquitous Orb2B isoform. Here, we report the discovery of a protein network comprised of protein phosphatase 2A (PP2A), Transducer of Erb-B2 (Tob), and Lim Kinase (LimK) that controls the abundance of Orb2A. PP2A maintains Orb2A in an unphosphorylated and unstable state, whereas Tob-LimK phosphorylates and stabilizes Orb2A. Mutation of LimK abolishes activity-dependent Orb2 oligomerization in the adult brain. Moreover, Tob-Orb2 association is modulated by neuronal activity and Tob activity in the mushroom body is required for stable memory formation. These observations suggest that the interplay between PP2A and Tob-LimK activity may dynamically regulate Orb2 amyloid-like oligomer formation and the stabilization of memories.


Asunto(s)
Amiloide/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Encéfalo/metabolismo , Células HEK293 , Humanos , Quinasas Lim/metabolismo , Memoria a Largo Plazo , Neuronas/metabolismo , Fosforilación , Mapas de Interacción de Proteínas , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Tiramina/fisiología
15.
Proc Natl Acad Sci U S A ; 107(26): 11987-92, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20547833

RESUMEN

In the study of long-term memory, how memory persists is a fundamental and unresolved question. What are the molecular components of the long-lasting memory trace? Previous studies in Aplysia and Drosophila have found that a neuronal variant of a RNA-binding protein with a self-perpetuating prion-like property, cytoplasmic polyadenylation element binding protein, is required for the persistence of long-term synaptic facilitation in the snail and long-term memory in the fly. In this study, we have identified the mRNA targets of the Drosophila neuronal cytoplasmic polyadenylation element binding protein, Orb2. These Orb2 targets include genes involved in neuronal growth, synapse formation, and intriguingly, protein turnover. These targets suggest that the persistent form of the memory trace might be comprised of molecules that maintain a sustained, permissive environment for synaptic growth in an activated synapse.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Cartilla de ADN/genética , Drosophila/citología , Proteínas de Drosophila/genética , Genes de Insecto , Memoria/fisiología , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética
16.
Science ; 367(6483): 1230-1234, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32165583

RESUMEN

How long-lived memories withstand molecular turnover is a fundamental question. Aggregates of a prion-like RNA-binding protein, cytoplasmic polyadenylation element-binding (CPEB) protein, is a putative substrate of long-lasting memories. We isolated aggregated Drosophila CPEB, Orb2, from adult heads and determined its activity and atomic structure, at 2.6-angstrom resolution, using cryo-electron microscopy. Orb2 formed ~75-nanometer-long threefold-symmetric amyloid filaments. Filament formation transformed Orb2 from a translation repressor to an activator and "seed" for further translationally active aggregation. The 31-amino acid protofilament core adopted a cross-ß unit with a single hydrophilic hairpin stabilized through interdigitated glutamine packing. Unlike the hydrophobic core of pathogenic amyloids, the hydrophilic core of Orb2 filaments suggests how some neuronal amyloids could be a stable yet regulatable substrate of memory.


Asunto(s)
Amiloide/química , Proteínas de Drosophila/química , Memoria a Largo Plazo , Neuronas/metabolismo , Agregado de Proteínas , Proteínas de Unión al ARN/química , Factores de Transcripción/química , Factores de Escisión y Poliadenilación de ARNm/química , Animales , Microscopía por Crioelectrón , Drosophila melanogaster , Glutamina/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica
17.
Elife ; 82019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31293237

RESUMEN

Progeny can inherit parental experiences through altered brain chemistry.


Asunto(s)
Herencia , Madres , Epigénesis Genética , Etanol , Femenino , Humanos , Testamentos
18.
Neuron ; 44(1): 49-57, 2004 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-15450159

RESUMEN

Recent cellular and molecular studies of both implicit and explicit memory storage suggest that experience-dependent modulation of synaptic strength and structure is a fundamental mechanism by which these diverse forms of memory are encoded and stored. For both forms of memory storage, some type of synaptic growth is thought to represent the stable cellular change that maintains the long-term process. In this review, we discuss recent findings on the molecular events that underlie learning-related synaptic growth in Aplysia and discuss the possibility that an active, prion-based mechanism is important for the maintenance of the structural change and for the persistence of long-term memory.


Asunto(s)
Memoria/fisiología , Modelos Biológicos , Sinapsis/fisiología , Animales , Humanos , Aprendizaje/fisiología , Tiempo
19.
Trends Cell Biol ; 28(6): 494-505, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29530524

RESUMEN

Prion-like proteins overlap with intrinsically disordered and low-complexity sequence families. These proteins are widespread, especially among mRNA-binding proteins. A salient feature of these proteins is the ability to form protein assemblies with distinct biophysical and functional properties. While prion-like proteins are involved in myriad of cellular processes, we propose potential roles for protein assemblies in regulated protein synthesis. Since proteins are the ultimate functional output of gene expression, when, where, and how much of a particular protein is made dictates the functional state of a cell. Recent finding suggests that the prion-like proteins offer unique advantages in translation regulation and also raises questions regarding formation and regulation of protein assemblies.


Asunto(s)
Priones/fisiología , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica , Humanos , Priones/genética , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Cell Biol ; 23(17): 6187-99, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12917340

RESUMEN

The synthesis of 60S ribosomal subunits in Saccharomyces cerevisiae requires Tif6p, the yeast homologue of mammalian eukaryotic translation initiation factor 6 (eIF6). In the present work, we have isolated a protein kinase from rabbit reticulocyte lysates on the basis of its ability to phosphorylate recombinant human eIF6. Mass spectrometric analysis as well as antigenic properties of the purified kinase identified it as casein kinase I. The site of in vitro phosphorylation, which is highly conserved from yeast to mammals, was identified as the serine residues at positions 174 (major site) and 175 (minor site). The homologous yeast protein Tif6p was also phosphorylated in vivo in yeast cells. Mutation of Tif6p at serine-174 to alanine reduced phosphorylation drastically and caused loss of cell growth and viability. When both Ser-174 and Ser-175 were mutated to alanine, phosphorylation of Tif6p was completely abolished. Furthermore, while wild-type Tif6p was distributed both in nuclei and the cytoplasm of yeast cells, the mutant Tif6p (with Ser174Ala and Ser175Ala) became a constitutively nuclear protein. These results suggest that phosphorylatable Ser-174 and Ser-175 play a critical role in the nuclear export of Tif6p.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Fosfoproteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Levaduras/crecimiento & desarrollo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Caseína Quinasas , División Celular/fisiología , Secuencia Conservada , Factores Eucarióticos de Iniciación , Humanos , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/aislamiento & purificación , Mamíferos , Datos de Secuencia Molecular , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/aislamiento & purificación , Fosforilación , Mutación Puntual , Proteínas Quinasas/química , Proteínas Quinasas/aislamiento & purificación , Proteínas Quinasas/metabolismo , Procesamiento Postranscripcional del ARN , Conejos , Reticulocitos/química , Proteínas Ribosómicas , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda