RESUMEN
Herpes zoster (HZ) induces significant pain and discomfort, which can seriously affect the quality of life of patients. At present, there is no specific treatment for HZ, and the mosteffective HZ control is vaccination. The main obstacle to developing an effective HZ vaccine is poorly induced cellular immune response. In this study, the IFN-α-gE-Fc fusion protein induced higher levels of humoral and cellular immunity compared to the unengineered gE antigen and higher levels of cellular immunity compared to the flagellin-gE-Fc fusion protein in a murine model. Compared with the marketed recombinant herpes zoster vaccine (Shingrix), IFN-α-gE-Fc can replace current used MPL adjuvant. At the same time, the immunogenicity of the IFN-α-gE-Fc + AQ was not weaker than that of the marketed recombinant zoster vaccine. The novel fusion protein provides a candidate entity for the development of a safe and effective novel HZ vaccine.
RESUMEN
Influenza remains a global public health threat, and the development of new antivirals is crucial to combat emerging drug-resistant influenza strains. In this study, we report the synthesis and evaluation of a sialyl lactosyl (TS)-bovine serum albumin (BSA) conjugate as a potential multivalent inhibitor of the influenza virus. The key trisaccharide component, TS, was efficiently prepared via a chemoenzymatic approach, followed by conjugation to dibenzocyclooctyne-modified BSA via a strain-promoted azide-alkyne cycloaddition reaction. Biophysical and biochemical assays, including surface plasmon resonance, isothermal titration calorimetry, hemagglutination inhibition, and neuraminidase inhibition, demonstrated the strong binding affinity of TS-BSA to the hemagglutinin (HA) and neuraminidase (NA) proteins of the influenza virus as well as intact virion particles. Notably, TS-BSA exhibited potent inhibitory activity against viral entry and release, preventing cytopathic effects in cell culture. This multivalent presentation strategy highlights the potential of glycocluster-based antivirals for combating influenza and other drug-resistant viral strains.
Asunto(s)
Antivirales , Albúmina Sérica Bovina , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Animales , Humanos , Gripe Humana/tratamiento farmacológico , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Estructura Molecular , Perros , Bovinos , Pruebas de Sensibilidad Microbiana , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Internalización del Virus/efectos de los fármacos , Células de Riñón Canino Madin Darby/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , GlicósidosRESUMEN
Mucosal immunity provides a potential for preventing initial infection and stopping subsequent transmission of SARS-CoV-2. Here, we examined the safety and immunogenicity of a replication-defective adenovirus type-5 vectored vaccine (Ad5-nCov) encoding SARS-CoV-2 spike protein delivered by nebulization inhalation in rhesus macaques. The vaccine-associated clinical pathology and toxicity were not observed in the NHP model. The extensive safety study indicated that Ad5-nCoV was mainly confined to the organs related to respiratory system and was rapidly cleared away from the system. Our results showed that Ad5-nCoV delivered by inhalation robustly elicited both systematic and mucosal immune responses against SARS-nCoV-2 and variants. Thus, Ad5-nCoV inhalation may provide an effective, safe and non-invasive vaccination strategy for the control of SARS-CoV-2.
Asunto(s)
Adenoviridae/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Vectores Genéticos/inmunología , Inmunidad Mucosa , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adenoviridae/genética , Administración por Inhalación , Animales , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Humanos , Inmunogenicidad Vacunal , Macaca mulatta , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
BACKGROUND: SARS-CoV-2 has caused millions of deaths, and, since Aug 11, 2020, 20 intramuscular COVID-19 vaccines have been approved for use. We aimed to evaluate the safety and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults without COVID-19 from China. METHOD: This was a randomised, single-centre, open-label, phase 1 trial done in Zhongnan Hospital (Wuhan, China), to evaluate the safety and immunogenicity of the Ad5-nCoV vaccine by aerosol inhalation in adults (≥18 years) seronegative for SARS-CoV-2. Breastfeeding or pregnant women and people with major chronic illnesses or history of allergies were excluded. Participants were enrolled and randomly assigned (1:1:1:1:1) into five groups to be vaccinated via intramuscular injection, aerosol inhalation, or both. Randomisation was stratified by sex and age (18-55 years or ≥56 years) using computer-generated randomisation sequences (block sizes of five). Only laboratory staff were masked to group assignment. The participants in the two aerosol groups received an initial high dose (2â×â1010 viral particles; HDmu group) or low dose (1â×â1010 viral particles; LDmu group) of Ad5-nCoV vaccine on day 0, followed by a booster on day 28. The mixed vaccination group received an initial intramuscular (5â×â1010 viral particles) vaccine on day 0, followed by an aerosolised booster (2â×â1010 viral particles) vaccine on day 28 (MIX group). The intramuscular groups received one dose (5â×â1010 viral particles; 1Dim group) or two doses (10â×â1010 viral particles; 2Dim group) of Ad5-nCoV on day 0. The primary safety outcome was adverse events 7 days after each vaccination, and the primary immunogenicity outcome was anti-SARS-CoV-2 spike receptor IgG antibody and SARS-CoV-2 neutralising antibody geometric mean titres at day 28 after last vaccination. This trial is registered with ClinicalTrials.gov, number NCT04552366. FINDINGS: Between Sept 28, 2020, and Sept 30, 2020, 230 individuals were screened for inclusion, of whom 130 (56%) participants were enrolled into the trial and randomly assigned into one of the five groups (26 participants per group). Within 7 days after vaccination, adverse events occurred in 18 (69%) in the HDmu group, 19 (73%) in the LDmu group, 19 (73%) in the MIX group, 19 (73%) in the 1Dim group, and 15 (58%) in the 2Dim group. The most common adverse events reported 7 days after the first or booster vaccine were fever (62 [48%] of 130 participants), fatigue (40 [31%] participants), and headache (46 [35%] participants). More adverse events were reported in participants who received intramuscular vaccination, including participants in the MIX group (49 [63%] of 78 participants), than those who received aerosol vaccine (13 [25%] of 52 participants) after the first vaccine vaccination. No serious adverse events were noted within 56 days after the first vaccine. At days 28 after last vaccination, geometric mean titres of SARS-CoV-2 neutralising antibody was 107 (95% CI 47-245) in the HDmu group, 105 (47-232) in the LDmu group, 396 (207-758) in the MIX group, 95 (61-147) in the 1Dim group, and 180 (113-288) in the 2Dim group. The geometric mean concentrations of receptor binding domain-binding IgG was 261 EU/mL (95% CI 121-563) in the HDmu group, 289 EU/mL (138-606) in the LDmu group, 2013 EU/mL (1180-3435) in the MIX group, 915 EU/mL (588-1423) in the 1Dim group, and 1190 EU/mL (776-1824) in the 2Dim group. INTERPRETATION: Aerosolised Ad5-nCoV is well tolerated, and two doses of aerosolised Ad5-nCoV elicited neutralising antibody responses, similar to one dose of intramuscular injection. An aerosolised booster vaccination at 28 days after first intramuscular injection induced strong IgG and neutralising antibody responses. The efficacy and cost-effectiveness of aerosol vaccination should be evaluated in future studies. FUNDING: National Key Research and Development Programme of China and National Science and Technology Major Project. TRANSLATION: For the Chinese translation of the Summary see Supplementary Material.
Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Administración por Inhalación , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Vacunas contra la COVID-19/efectos adversos , China , Método Doble Ciego , Femenino , Humanos , Inmunidad Celular/inmunología , Esquemas de Inmunización , Inmunización Secundaria , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Adulto JovenRESUMEN
Antibody-dependent cellular cytotoxicity (ADCC) responses to viral infection are a form of antibody regulated immune responses mediated through the Fc fragment. Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered ADCC responses contributes to COVID-19 disease development is currently not well understood. To understand the potential correlation between ADCC responses and COVID-19 disease development, we analyzed the ADCC activity and neutralizing antibody response in 255 individuals ranging from asymptomatic to fatal infections over 1 year post disease. ADCC was elicited by 10 days post-infection, peaked by 11-20 days, and remained detectable until 400 days post-infection. In general, patients with severe disease had higher ADCC activities. Notably, patients who had severe disease and recovered had higher ADCC activities than patients who had severe disease and deceased. Importantly, ADCC activities were mediated by a diversity of epitopes in SARS-COV-2-infected mice and induced to comparable levels against SARS-CoV-2 variants of concern (VOCs) (B.1.1.7, B.1.351, and P.1) as that against the D614G mutant in human patients and vaccinated mice. Our study indicates anti-SARS-CoV-2 ADCC as a major trait of COVID-19 patients with various conditions, which can be applied to estimate the extra-neutralization level against COVID-19, especially lethal COVID-19.