Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 567
Filtrar
1.
Nature ; 628(8008): 596-603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509371

RESUMEN

Motor neurons are the final common pathway1 through which the brain controls movement of the body, forming the basic elements from which all movement is composed. Yet how a single motor neuron contributes to control during natural movement remains unclear. Here we anatomically and functionally characterize the individual roles of the motor neurons that control head movement in the fly, Drosophila melanogaster. Counterintuitively, we find that activity in a single motor neuron rotates the head in different directions, depending on the starting posture of the head, such that the head converges towards a pose determined by the identity of the stimulated motor neuron. A feedback model predicts that this convergent behaviour results from motor neuron drive interacting with proprioceptive feedback. We identify and genetically2 suppress a single class of proprioceptive neuron3 that changes the motor neuron-induced convergence as predicted by the feedback model. These data suggest a framework for how the brain controls movements: instead of directly generating movement in a given direction by activating a fixed set of motor neurons, the brain controls movements by adding bias to a continuing proprioceptive-motor loop.


Asunto(s)
Drosophila melanogaster , Neuronas Motoras , Movimiento , Postura , Propiocepción , Animales , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Retroalimentación Fisiológica/fisiología , Cabeza/fisiología , Modelos Neurológicos , Neuronas Motoras/fisiología , Movimiento/fisiología , Postura/fisiología , Propiocepción/genética , Propiocepción/fisiología , Masculino
2.
Plant J ; 118(3): 802-822, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38305492

RESUMEN

Floral patterns are unique to rice and contribute significantly to its reproductive success. SL1 encodes a C2H2 transcription factor that plays a critical role in flower development in rice, but the molecular mechanism regulated by it remains poorly understood. Here, we describe interactions of the SL1 with floral homeotic genes, SPW1, and DL in specifying floral organ identities and floral meristem fate. First, the sl1 spw1 double mutant exhibited a stamen-to-pistil transition similar to that of sl1, spw1, suggesting that SL1 and SPW1 may located in the same pathway regulating stamen development. Expression analysis revealed that SL1 is located upstream of SPW1 to maintain its high level of expression and that SPW1, in turn, activates the B-class genes OsMADS2 and OsMADS4 to suppress DL expression indirectly. Secondly, sl1 dl displayed a severe loss of floral meristem determinacy and produced amorphous tissues in the third/fourth whorl. Expression analysis revealed that the meristem identity gene OSH1 was ectopically expressed in sl1 dl in the fourth whorl, suggesting that SL1 and DL synergistically terminate the floral meristem fate. Another meristem identity gene, FON1, was significantly decreased in expression in sl1 background mutants, suggesting that SL1 may directly activate its expression to regulate floral meristem fate. Finally, molecular evidence supported the direct genomic binding of SL1 to SPW1 and FON1 and the subsequent activation of their expression. In conclusion, we present a model to illustrate the roles of SL1, SPW1, and DL in floral organ specification and regulation of floral meristem fate in rice.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Meristema , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Mutación
3.
Plant Physiol ; 191(1): 515-527, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36087013

RESUMEN

Grain cadmium (Cd) is translocated from source to sink tissues exclusively via phloem, though the phloem Cd unloading transporter has not been identified yet. Here, we isolated and functionally characterized a defensin-like gene DEFENSIN 8 (DEF8) highly expressed in rice (Oryza sativa) grains and induced by Cd exposure in seedling roots. Histochemical analysis and subcellular localization detected DEF8 expression preferentially in pericycle cells and phloem of seedling roots, as well as in phloem of grain vasculatures. Further analysis demonstrated that DEF8 is secreted into extracellular spaces possibly by vesicle trafficking. DEF8 bound to Cd in vitro, and Cd efflux from protoplasts as well as loading into xylem vessels decreased in the def8 mutant seedlings compared with the wild type. At maturity, significantly less Cd accumulation was observed in the mutant grains. These results suggest that DEF8 is a dual function protein that facilitates Cd loading into xylem and unloading from phloem, thus mediating Cd translocation from roots to shoots and further allocation to grains, representing a phloem Cd unloading regulator. Moreover, essential mineral nutrient accumulation as well as important agronomic traits were not affected in the def8 mutants, suggesting DEF8 is an ideal target for breeding low grain Cd rice.


Asunto(s)
Cadmio , Oryza , Cadmio/metabolismo , Oryza/genética , Oryza/metabolismo , Floema/metabolismo , Fitomejoramiento , Grano Comestible/metabolismo , Plantones/metabolismo , Raíces de Plantas/metabolismo , Defensinas/genética , Defensinas/análisis , Defensinas/metabolismo
4.
J Pineal Res ; 76(1): e12914, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37753741

RESUMEN

Osteomyelitis (OM), characterized by heterogeneity and complexity in treatment, has a high risk of infection recurrence which may cause limb disability. Management of chronic inactive osteomyelitis (CIOM) without typical inflammatory symptoms is a great challenge for orthopedic surgeons. On the basis of data analysis of 1091 OM cases, we reported that latent osteogenic decline in CIOM patients was the main cause of secondary surgery. Our research shows that impairment of osteoblasts capacity in CIOM patients is associated with ferroptosis of osteoblasts caused by internalization of Staphylococcus aureus. Further studies show that melatonin could alleviate ferroptosis of osteoblasts in infected states through Nox4/ROS/P38 axis and protect the osteogenic ability of CIOM patients. Knockout of NADPH oxidase 4 (Nox4) in vivo could effectively relieve ferroptosis of osteoblasts in the state of infection and promote osteogenesis. Through a large number of clinical data analyses combined with molecular experiments, this study clarified that occult osteogenic disorders in CIOM patients were related to ferroptosis of osteoblasts. We revealed that melatonin might be a potential therapeutic drug for CIOM patients and provided a new insight for the treatment of OM.


Asunto(s)
Melatonina , Osteomielitis , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Osteoblastos , Osteogénesis , Staphylococcus aureus , Osteomielitis/tratamiento farmacológico
5.
Fish Shellfish Immunol ; 146: 109378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272333

RESUMEN

In this experiment, we investigated the effects of adding chlorogenic acid (CGA) to the diet on growth performance, immune function, inflammation response, antioxidant capacity and its related mechanisms of common carp (Cyprinus carpio). A total of 600 fish were selected and randomly divided into five treatment groups and fed with CGA containing 0 mg/kg (CK), 100 mg/kg (L100), 200 mg/kg (L200), 400 mg/kg (L400) and 800 mg/kg (L800) for 56 days. The results of the experiment were as follows: addition of CGA significantly increased the WGR, SGR, FER, and PER of common carp (P < 0.05). The addition of 400-800 mg/kg of CGA significantly increased the serum levels of LZM, AKP activity, C3 and C4 concentration, and increased immune function of common carp (P < 0.05). Regarding antioxidant enzyme activities, adding CGA significantly increased SOD, CAT, and GsH-Px activities, while decreasing MDA content (P < 0.05). Compared with the CK group, the mRNA expression levels of NF-κB, TNF-α, and IL-1ß were decreased. The IL-10 and TGF-ß were increased in the liver and intestines of the CGA supplemented group. Meanwhile, the addition of CGA also significantly up-regulated the mRNA expression levels of Nrf2, HO-1, SOD, CAT, and GPX (P < 0.05). CGA also positively contributed to the development of the carp intestinal tract, as demonstrated by decreased serum levels of DAO, D-LA, and ET-1. And the mucosal fold height was increased significantly with increasing levels of CGA. In conclusion, the addition of CGA in the feed can enhance the growth performance, immune function and antioxidant capacity of common carp, and improve the health of the intestine and liver. According to the results of this experiment, the optimal addition amount in common carp diets was 400 mg/kg.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Carpas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Clorogénico/farmacología , Transducción de Señal , Suplementos Dietéticos , Dieta/veterinaria , Intestinos , Hígado/metabolismo , Inmunidad Innata , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis
6.
Fish Shellfish Immunol ; 144: 109294, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092096

RESUMEN

N-acetylcysteine (NAC) positively contributes to enhancing animal health, regulating inflammation and reducing stress by participating in the synthesis of cysteine, glutathione, and taurine in the body. The present study aims to investigate the effects of dietary different levels of NAC on the morphology, function and physiological state of hepatopancreas in juvenile common carp (Cyprinus carpio). 450 common carps were randomly divided into 5 groups: N1 (basal diet), N2 (1.5 g/kg NAC diet), N3 (3.0 g/kg NAC diet), N4 (4.5 g/kg NAC diet) and N5 (6.0 g/kg NAC diet), and fed for 8 weeks. The results indicated that dietary 3.0-6.0 g/kg NAC reduced hepatopancreas lipid vacuoles and nuclear translocation, and inhibited apoptosis in common carp. Simultaneously, the activities of hepatopancreas alanine aminotransferase and aspartate aminotransferase progressively increased with rising dietary NAC levels. Dietary NAC enhanced the non-specific immune function of common carp, and exerted anti-inflammatory effects by inhibiting the MAPK/NF-κB signaling pathway. Additionally, dietary 3.0-6.0 g/kg NAC significantly improved the antioxidant capacity of common carp, which was associated with enhanced glutathione metabolism, clearance of ROS and the activation of Nrf2 signaling pathway. In summary, NAC has the potential to alleviate inflammation, mitigate oxidative stress and inhibit apoptosis via the MAPK/NF-κB/Nrf2 signaling pathway, thereby improving hepatopancreas function and health of common carp. The current findings provide a theoretical basis for promoting the application of NAC in aquaculture and ecological cultivation of aquatic animals.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Acetilcisteína/farmacología , Carpas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hepatopáncreas/metabolismo , Transducción de Señal , Dieta/veterinaria , Inflamación/veterinaria , Glutatión , Suplementos Dietéticos
7.
Cell Biol Toxicol ; 40(1): 34, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769159

RESUMEN

Anorectal malformation (ARM) is a prevalent early pregnancy digestive tract anomaly. The intricate anatomy of the embryonic cloaca region makes it challenging for traditional high-throughput sequencing methods to capture location-specific information. Spatial transcriptomics was used to sequence libraries of frozen sections from embryonic rats at gestational days (GD) 14 to 16, covering both normal and ARM cases. Bioinformatics analyses and predictions were performed using methods such as WGCNA, GSEA, and PROGENy. Immunofluorescence staining was used to verify gene expression levels. Gene expression data was obtained with anatomical annotations of clusters, focusing on the cloaca region's location-specific traits. WGCNA revealed gene modules linked to normal and ARM cloacal anatomy development, with cooperation between modules on GD14 and GD15. Differential gene expression profiles and functional enrichment were presented. Notably, protein levels of Pcsk9, Hmgb2, and Sod1 were found to be downregulated in the GD15 ARM hindgut. The PROGENy algorithm predicted the activity and interplay of common signaling pathways in embryonic sections, highlighting their synergistic and complementary effects. A competing endogenous RNA (ceRNA) regulatory network was constructed from whole transcriptome data. Spatial transcriptomics provided location-specific cloaca region gene expression. Diverse bioinformatics analyses deepened our understanding of ARM's molecular interactions, guiding future research and providing insights into gene regulation in ARM development.


Asunto(s)
Malformaciones Anorrectales , Redes Reguladoras de Genes , Transducción de Señal , Transcriptoma , Animales , Malformaciones Anorrectales/genética , Malformaciones Anorrectales/metabolismo , Malformaciones Anorrectales/embriología , Transducción de Señal/genética , Transcriptoma/genética , Ratas , Femenino , Regulación del Desarrollo de la Expresión Génica , Embarazo , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Ratas Sprague-Dawley , Cloaca/embriología , Cloaca/metabolismo
8.
Environ Res ; 252(Pt 2): 118899, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604486

RESUMEN

The integration of electrokinetic and bioremediation (EK-BIO) represents an innovative approach for addressing trichloroethylene (TCE) contamination in low-permeability soil. However, there remains a knowledge gap in the impact of the inoculation approach on TCE dechlorination and the microbial response with the presence of co-existing substances. In this study, four 1-dimensional columns were constructed with different inoculation treatments. Monitoring the operation conditions revealed that a stabilization period (∼40 days) was required to reduce voltage fluctuation. The group with inoculation into the soil middle (Group B) exhibited the highest TCE dechlorination efficiency, achieving a TCE removal rate of 84%, which was 1.1-3.2 fold higher compared to the others. Among degraded products in Group B, 39% was ethylene. The physicochemical properties of the post-soil at different regions illustrated that dechlorination coincided with the Fe(III) and SO42- reduction, meaning that the EK-BIO system promoted the formation of a reducing environment. Microbial community analysis demonstrated that Dehalococcoides was only detected in the treatment of injection at soil middle or near the cathode, with abundance enriched by 2.1%-7.2%. The principal components analysis indicated that the inoculation approach significantly affected the evolution of functional bacteria. Quantitative polymerase chain reaction (qPCR) analysis demonstrated that Group B exhibited at least 2.8 and 4.2-fold higher copies of functional genes (tceA, vcrA) than those of other groups. In conclusion, this study contributes to the development of effective strategies for enhancing TCE biodechlorination in the EK-BIO system, which is particularly beneficial for the remediation of low-permeability soils.


Asunto(s)
Biodegradación Ambiental , Microbiología del Suelo , Contaminantes del Suelo , Tricloroetileno , Tricloroetileno/metabolismo , Contaminantes del Suelo/metabolismo , Permeabilidad , Suelo/química
9.
Ecotoxicol Environ Saf ; 274: 116242, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513530

RESUMEN

Oxadiazon (ODZ) is extensively utilized in agricultural fields for weed control owing to its strong effectiveness. However, excessive loading of ODZ in water bodies and agricultural soils can lead to various environmental concerns. Therefore, it is crucial to understand the ODZ metabolic process and associated mechanisms in crops to assess the likelihood of ODZ contamination in the environment. This study aimed to assess the effects of ODZ on the growth and toxicological responses of rice (Oryza sativa). The growth of rice tissues was notably compromised with the increase in ODZ concentrations. RNA sequencing in combination with liquid chromatography-quadrupole-time-of-flight-high-resolution mass spectrometry/mass spectrometry (LC-Q-TOF-HRMS/MS) analysis allowed for the identification of numerous transcriptional components associated with ODZ metabolism. Four libraries comprising rice roots and shoots exposed to ODZ were RNA-sequenced in triplicate. The application of environmentally realistic ODZ concentrations upregulated the expression of 844 genes in shoots and 1476 genes in roots. Gene enrichment analysis revealed the presence of multiple enzymes involved in ODZ metabolism and detoxification. These enzymes play a critical role in mitigating environmental stress and facilitating xenobiotic metabolism. Notably, among differentially expressed genes, several key enzymes were identified, including cytochrome P450s, protein kinases, aminotransferases, and ATP-binding cassette transporters involved in the metabolic process. Using LC-Q-TOF-HRMS/MS, 3 metabolites and 13 conjugates were identified in multiple metabolic pathways involving oxidation, hydrolysis, glycosylation, acetylation, and methylation. This study successfully established a potential link between the specific metabolic products of ODZ and increased activities of their corresponding enzymes. Moreover, this study considerably elucidates the detailed pathways and mechanisms involved in ODZ metabolism. The study findings provide valuable insights into the development of genotypes for reducing ODZ residues in paddy fields and minimizing their accumulation in rice crops.


Asunto(s)
Oryza , Oxadiazoles , Oryza/metabolismo , Espectrometría de Masas en Tándem , Agricultura , Cromatografía Liquida
10.
Pestic Biochem Physiol ; 203: 106021, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084780

RESUMEN

The role of melatonin (MT), an essential phytohormone controlling the physiological and biochemical reactions of plants to biotic and abiotic stress, in alleviating pesticide phytotoxicity remains unclear. This study explores the effects of MT (0 and 200 mg/L) and six doses of fluroxypyr-meptyl (FLUME) (0-0.14 mg/L) on the physiological response of rice (Oryza sativa). FLUME exposure inhibited the growth of rice seedlings, with MT treatment ameliorating this effect. To determine the biochemical processes and catalytic events involved in FLUME breakdown in rice, six rice root and shoot libraries exposed to either FLUME or FLUME-MT were generated and then subjected to RNA-Seq-LC-Q-TOF-HRMS/MS analyses. The results showed that 1510 root genes and 139 shoot genes exhibited higher upregulation in plants treated with an ecologically realistic FLUME concentration and MT than in those treated with FLUME alone. Gene enrichment analysis revealed numerous FLUME-degradative enzymes operating in xenobiotic tolerance to environmental stress and molecular metabolism. Regarding the FLUME degradation process, certain differentially expressed genes were responsible for producing important enzymes, such as cytochrome P450, glycosyltransferases, and acetyltransferases. Four metabolites and ten conjugates in the pathways involving hydrolysis, malonylation, reduction, glycosylation, or acetylation were characterized using LC-Q-TOF-HRMS/MS to support FLUME-degradative metabolism. Overall, external application of MT can increase rice tolerance to FLUME-induced oxidative stress by reducing phytotoxicity and FLUME accumulation. This study provides insights into MT's role in facilitating FLUME degradation, with potential implications for engineering genotypes supporting FLUME degradation in paddy crops.


Asunto(s)
Melatonina , Oryza , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Melatonina/farmacología , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
11.
Fish Physiol Biochem ; 50(1): 273-293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099983

RESUMEN

Investigated mitigating effects of sodium butyrate (SB) on the inflammatory response, oxidative stress, and growth inhibition of common carp (Cyprinus carpio) (2.94 ± 0.2 g) are caused by glycinin. Six isonitrogenous and isoenergetic diets were prepared, in which the basal diet was the control diet and the Gly group diet contained 80 g/kg glycinin, while the remaining 4 diets were supplemented with 0.75, 1.50, 2.25, and 3.00 g/kg SB, respectively. The feeding trial lasted for 8 weeks, and the results indicated that supplementing the diet with 1.50-2.25 g/kg of SB significantly improved feed efficiency and alleviated the growth inhibition induced by glycinin. Hepatopancreas and intestinal protease activities and the content of muscle crude protein were significantly decreased by dietary glycinin, but supplement 1.50-2.25 g/kg SB partially reversed this result. SB (1.50-2.25 g/kg) increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the hepatopancreas and reduced the activities of AST and ALT in the serum. Glycinin significantly reduced immune and antioxidant enzyme activities, whereas 1.50-2.25 g/kg SB reversed these adverse effects. Furthermore, compared with the Gly group, supplement 1.50-2.25 g/kg SB eminently up-regulated the TGF-ß and IL-10 mRNA, and down-regulated the IL-1ß, TNF-α, and NF-κB mRNA in hepatopancreas, mid-intestine (MI), and distal intestine (DI). Meanwhile, supplement 1.50-2.25 g/kg SB activated the Keap1-Nrf2-ARE signaling pathway and upregulate CAT, SOD, and HO-1 mRNA expression in hepatopancreas, MI, and DI. Summarily, glycinin induced inflammatory response, and oxidative stress of common carp ultimately decreased the digestive function and growth performance. SB partially mitigated these adverse effects by activating the Keap1-Nrf2-ARE signaling pathway and inhibiting the NF-κB signaling pathway.


Asunto(s)
Carpas , Globulinas , Proteínas de Soja , Animales , Carpas/metabolismo , Ácido Butírico/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , ARN Mensajero/metabolismo , Alimentación Animal/análisis
12.
Bull Environ Contam Toxicol ; 112(4): 51, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556558

RESUMEN

Esketamine (ESK) is the S-enantiomer of ketamine racemate (a new psychoactive substance) that can result in illusions, and alter hearing, vision, and proprioception in human and mouse. Up to now, the neurotoxicity caused by ESK at environmental level in fish is still unclear. This work studied the effects of ESK on behaviors and transcriptions of genes in dopamine and GABA pathways in zebrafish larvae at ranging from 12.4 ng L- 1 to 11141.1 ng L- 1 for 7 days post fertilization (dpf). The results showed that ESK at 12.4 ng L- 1 significantly reduced the touch response of the larvae at 48 hpf. ESK at 12.4 ng L- 1 also reduced the time and distance of larvae swimming at the outer zone during light period, which implied that ESK might potentially decrease the anxiety level of larvae. In addition, ESK increased the transcription of th, ddc, drd1a, drd3 and drd4a in dopamine pathway. Similarly, ESK raised the transcription of slc6a1b, slc6a13 and slc12a2 in GABA pathway. This study suggested that ESK could affect the heart rate and behaviors accompanying with transcriptional alterations of genes in DA and GABA pathways at early-staged zebrafish, which resulted in neurotoxicity in zebrafish larvae.


Asunto(s)
Dopamina , Ketamina , Humanos , Animales , Ratones , Dopamina/metabolismo , Dopamina/farmacología , Pez Cebra/genética , Pez Cebra/metabolismo , Ketamina/metabolismo , Ketamina/farmacología , Larva , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
13.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2402-2409, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38812141

RESUMEN

Due to the highly stable structure of keratin, the extraction and dissolution steps of animal medicines rich in keratin are complex, which seriously restricts the detection efficiency and flux. Therefore, this study simplified the pre-treatment steps of horn samples and optimized the detection methods of characteristic peptides to improve the efficiency of identifying the specificity of horn-derived animal medicines. For detection of the characteristic peptides in horn-derived animal medicines treated with/without iodoace-tamide(IAA), the ion pair conditions of the characteristic peptides were optimized, and the retention time, intensity and other data of the specific peptides were compared between the samples treated with/without IAA. Two pre-treatment methods, direct enzymatic hydrolysis and total protein extraction followed by enzymatic hydrolysis, were used to prepare horn-derived animal medicine samples. The effects of different methods on the detection of specific peptides in the samples of Saiga antelope horn, water buffalo horn, goat horn, and yak horn were compared regarding the retention time of specific peptides and ion intensity. The results indicated that after direct enzymatic hydrolysis, the specific peptides in the samples without IAA treatment can be detected. Compared with the characteristic peptides in the samples treated with IAA, their retention time shifted back and the mass spectrometry response slightly decreased. The specific peptides of the samples without IAA treatment had good specificity and did not affect the specificity identification of horn-derived animal medicines. Overall, the process of direct enzymatic hydrolysis can be used to treat horn samples, omitting the steps of protein extraction and dithiothreitol and IAA treatment, significantly improving the pre-treatment efficiency without affecting the specificity identification of horn-derived animal medicines. This study provides ideas for quality research and standard improvement of horn-derived animal medicines.


Asunto(s)
Cuernos , Queratinas , Péptidos , Animales , Cuernos/química , Péptidos/química , Queratinas/química , Bovinos , Cabras , Búfalos , Cromatografía Líquida de Alta Presión
14.
J Neurosci ; 42(29): 5755-5770, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35705488

RESUMEN

Extinguishing the previously acquired fear is critical for the adaptation of an organism to the ever-changing environment, a process requiring the engagement of GABAA receptors (GABAARs). GABAARs consist of tens of structurally, pharmacologically, and functionally heterogeneous subtypes. However, the specific roles of these subtypes in fear extinction remain largely unexplored. Here, we observed that in the medial prefrontal cortex (mPFC), a core region for mood regulation, the extrasynaptically situated, δ-subunit-containing GABAARs [GABAA(δ)Rs], had a permissive role in tuning fear extinction in male mice, an effect sharply contrasting to the established but suppressive role by the whole GABAAR family. First, the fear extinction in individual mice was positively correlated with the level of GABAA(δ)R expression and function in their mPFC. Second, knockdown of GABAA(δ)R in mPFC, specifically in its infralimbic (IL) subregion, sufficed to impair the fear extinction in mice. Third, GABAA(δ)R-deficient mice also showed fear extinction deficits, and re-expressing GABAA(δ)Rs in the IL of these mice rescued the impaired extinction. Further mechanistic studies demonstrated that the permissive effect of GABAA(δ)R was associated with its role in enabling the extinction-evoked plastic regulation of neuronal excitability in IL projection neurons. By contrast, GABAA(δ)R had little influence on the extinction-evoked plasticity of glutamatergic transmission in these cells. Altogether, our findings revealed an unconventional and permissive role of extrasynaptic GABAA receptors in fear extinction through a route relying on nonsynaptic plasticity.SIGNIFICANCE STATEMENT The medial prefrontal cortex (mPFC) is one of the kernel brain regions engaged in fear extinction. Previous studies have repetitively shown that the GABAA receptor (GABAAR) family in this region act to suppress fear extinction. However, the roles of specific GABAAR subtypes in mPFC are largely unknown. We observed that the GABAAR-containing δ-subunit [GABAA(δ)R], a subtype of GABAARs exclusively situated in the extrasynaptic membrane and mediating the tonic neuronal inhibition, works oppositely to the whole GABAAR family and promotes (but does not suppress) fear extinction. More interestingly, in striking contrast to the synaptic GABAARs that suppress fear extinction by breaking the extinction-evoked plasticity of glutamatergic transmission, the GABAA(δ)R promotes fear extinction through enabling the plastic regulation of neuronal excitability in the infralimbic subregion of mPFC. Our findings thus reveal an unconventional role of GABAA(δ)R in promoting fear extinction through a route relying on nonsynaptic plasticity.


Asunto(s)
Extinción Psicológica , Miedo , Animales , Miedo/fisiología , Masculino , Ratones , Neuronas/metabolismo , Plásticos/metabolismo , Plásticos/farmacología , Corteza Prefrontal/fisiología , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/farmacología
15.
Glia ; 71(3): 485-508, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36380708

RESUMEN

A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1ß, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Enfermedades Neurodegenerativas , Humanos , ARN/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Astrocitos/metabolismo , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/metabolismo , Mediadores de Inflamación/metabolismo
16.
Opt Lett ; 48(16): 4416-4419, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582046

RESUMEN

A tunable Janus absorptive frequency-selective reflector (AFSR) utilizing a graphene-based hyperbolic that showcases exceptional doubling octave frequency absorption (DOFA) or tripling octave frequency absorption (TOFA) is proposed. The multi-objective gray wolf optimization algorithm is employed to drive the transfer matrix method, optimizing parameters such as the dielectric permittivity, thickness, and the Fermi level (Ef) to achieve harmonic absorption. By manipulating the Ef of graphene, the dimensions of the absorption band and reflection window can be finely adjusted. Additionally, a frequency-selective reflector is introduced, enabling a seamless transition between selective absorption and transmission by adjusting the Ef. This AFSR represents a groundbreaking approach to achieving DOFA or TOFA while simultaneously offering valuable insights into the design of intelligent AFSRs.

17.
PLoS Comput Biol ; 18(6): e1009409, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35700188

RESUMEN

A plethora of experimental studies have shown that long-term synaptic plasticity can be expressed pre- or postsynaptically depending on a range of factors such as developmental stage, synapse type, and activity patterns. The functional consequences of this diversity are not clear, although it is understood that whereas postsynaptic expression of plasticity predominantly affects synaptic response amplitude, presynaptic expression alters both synaptic response amplitude and short-term dynamics. In most models of neuronal learning, long-term synaptic plasticity is implemented as changes in connective weights. The consideration of long-term plasticity as a fixed change in amplitude corresponds more closely to post- than to presynaptic expression, which means theoretical outcomes based on this choice of implementation may have a postsynaptic bias. To explore the functional implications of the diversity of expression of long-term synaptic plasticity, we adapted a model of long-term plasticity, more specifically spike-timing-dependent plasticity (STDP), such that it was expressed either independently pre- or postsynaptically, or in a mixture of both ways. We compared pair-based standard STDP models and a biologically tuned triplet STDP model, and investigated the outcomes in a minimal setting, using two different learning schemes: in the first, inputs were triggered at different latencies, and in the second a subset of inputs were temporally correlated. We found that presynaptic changes adjusted the speed of learning, while postsynaptic expression was more efficient at regulating spike timing and frequency. When combining both expression loci, postsynaptic changes amplified the response range, while presynaptic plasticity allowed control over postsynaptic firing rates, potentially providing a form of activity homeostasis. Our findings highlight how the seemingly innocuous choice of implementing synaptic plasticity by single weight modification may unwittingly introduce a postsynaptic bias in modelling outcomes. We conclude that pre- and postsynaptically expressed plasticity are not interchangeable, but enable complimentary functions.


Asunto(s)
Plasticidad Neuronal , Neuronas , Potenciales de Acción/fisiología , Aprendizaje , Modelos Neurológicos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología
18.
Eur Radiol ; 33(4): 2965-2974, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36418622

RESUMEN

OBJECTIVES: Recent studies have revealed the change of molecular subtypes in breast cancer (BC) after neoadjuvant therapy (NAT). This study aims to construct a non-invasive model for predicting molecular subtype alteration in breast cancer after NAT. METHODS: Eighty-two estrogen receptor (ER)-negative/ human epidermal growth factor receptor 2 (HER2)-negative or ER-low-positive/HER2-negative breast cancer patients who underwent NAT and completed baseline MRI were retrospectively recruited between July 2010 and November 2020. Subtype alteration was observed in 21 cases after NAT. A 2D-DenseUNet machine-learning model was built to perform automatic segmentation of breast cancer. 851 radiomic features were extracted from each MRI sequence (T2-weighted imaging, ADC, DCE, and contrast-enhanced T1-weighted imaging), both in the manual and auto-segmentation masks. All samples were divided into a training set (n = 66) and a test set (n = 16). XGBoost model with 5-fold cross-validation was performed to predict molecular subtype alterations in breast cancer patients after NAT. The predictive ability of these models was subsequently evaluated by the AUC of the ROC curve, sensitivity, and specificity. RESULTS: A model consisting of three radiomics features from the manual segmentation of multi-sequence MRI achieved favorable predictive efficacy in identifying molecular subtype alteration in BC after NAT (cross-validation set: AUC = 0.908, independent test set: AUC = 0.864); whereas an automatic segmentation approach of BC lesions on the DCE sequence produced good segmentation results (Dice similarity coefficient = 0.720). CONCLUSIONS: A machine learning model based on baseline MRI is proven useful for predicting molecular subtype alterations in breast cancer after NAT. KEY POINTS: • Machine learning models using MRI-based radiomics signature have the ability to predict molecular subtype alterations in breast cancer after neoadjuvant therapy, which subsequently affect treatment protocols. • The application of deep learning in the automatic segmentation of breast cancer lesions from MRI images shows the potential to replace manual segmentation..


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Estudios Retrospectivos , Terapia Neoadyuvante/métodos , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
19.
Purinergic Signal ; 19(1): 29-41, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35218450

RESUMEN

Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate), a nonspecific P2X1-7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4-L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Electroacupuntura , Ratas , Animales , Hiperalgesia/metabolismo , Regulación hacia Abajo , Ganglios Espinales/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Neuropatías Diabéticas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Diabetes Mellitus/metabolismo
20.
Purinergic Signal ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870716

RESUMEN

Diabetic neuropathic pain (DNP) is a common and destructive complication of diabetes mellitus. The discovery of effective therapeutic methods for DNP is vitally imperative because of the lack of effective treatments. Although 2 Hz electroacupuncture (EA) was a successful approach for relieving DNP, the mechanism underlying the effect of EA on DNP is still poorly understood. Here, we established a rat model of DNP that was induced by streptozotocin (STZ) injection. P2X4R was upregulated in the spinal cord after STZ-injection. The upregulation of P2X4R was mainly expressed on activated microglia. Intrathecal injection of a P2X4R antagonist or microglia inhibitor attenuated STZ-induced nociceptive thermal hyperalgesia and reduced the overexpression of brain-derived neurotrophic factor (BDNF), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the spinal cord. We also assessed the effects of EA treatment on the pain hypersensitivities of DNP rats, and further investigated the possible mechanism underlying the analgesic effect of EA. EA relieved the hyperalgesia of DNP. In terms of mechanism, EA reduced the upregulation of P2X4R on activated microglia and decreased BDNF, IL-1ß and TNF-α in the spinal cord. Mechanistic research of EA's analgesic impact would be beneficial in ensuring its prospective therapeutic effect on DNP as well as in extending EA's applicability.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda