Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38811360

RESUMEN

The advancement of spatial transcriptomics (ST) technology contributes to a more profound comprehension of the spatial properties of gene expression within tissues. However, due to challenges of high dimensionality, pronounced noise and dynamic limitations in ST data, the integration of gene expression and spatial information to accurately identify spatial domains remains challenging. This paper proposes a SpaNCMG algorithm for the purpose of achieving precise spatial domain description and localization based on a neighborhood-complementary mixed-view graph convolutional network. The algorithm enables better adaptation to ST data at different resolutions by integrating the local information from KNN and the global structure from r-radius into a complementary neighborhood graph. It also introduces an attention mechanism to achieve adaptive fusion of different reconstructed expressions, and utilizes KPCA method for dimensionality reduction. The application of SpaNCMG on five datasets from four sequencing platforms demonstrates superior performance to eight existing advanced methods. Specifically, the algorithm achieved highest ARI accuracies of 0.63 and 0.52 on the datasets of the human dorsolateral prefrontal cortex and mouse somatosensory cortex, respectively. It accurately identified the spatial locations of marker genes in the mouse olfactory bulb tissue and inferred the biological functions of different regions. When handling larger datasets such as mouse embryos, the SpaNCMG not only identified the main tissue structures but also explored unlabeled domains. Overall, the good generalization ability and scalability of SpaNCMG make it an outstanding tool for understanding tissue structure and disease mechanisms. Our codes are available at https://github.com/ZhihaoSi/SpaNCMG.


Asunto(s)
Algoritmos , Transcriptoma , Humanos , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Redes Neurales de la Computación , Biología Computacional/métodos , Corteza Prefrontal/metabolismo
2.
Small ; 19(15): e2207651, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36631281

RESUMEN

Single-atom alloys (SAAs) display excellent electrocatalytic performance by overcoming the scaling relationships in alloys. However, due to the lack of a unique structure engineering design, it is difficult to obtain SAAs with a high specific surface area to expose more active sites. Herein, single Co atoms are immobilized on Pd metallene (Pdm) support to obtain Co/Pdm through the design of the engineered morphology of Pd, realizing the preparation of ultra-thin 2D SAA. The unsaturated coordination environments combined with the unique geometric and electronic structures realize the modulation of the d-band center and the redistribution of charges, generating highly active electronic states on the surface of Co/Pdm. Benefiting from the synergistic interaction and spillover effect, the Co/Pdm electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in both acid and alkaline solutions, especially with a Tafel slope of 8.2 mV dec-1 and a low overpotential of 24.7 mV at 10 mA cm-2 in the acidic medium, which outperforms commercial Pt/C and Pd/C. This work highlights the successful preparation of 2D ultra-thin SAA, which provides a new strategy for the preparation of HER electrocatalyst with high efficiency, activity, and stability.

3.
Angew Chem Int Ed Engl ; 58(48): 17175-17179, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31549761

RESUMEN

The polydimethylsiloxane (PDMS) membrane commonly used for separation of biobutanol from fermentation broth fails to meet demand owing to its discontinuous and polluting thermal fabrication. Now, an UV-induced polymerization strategy is proposed to realize the ultrafast and continuous fabrication of the PDMS membrane. UV-crosslinking of synthesized methacrylate-functionalized PDMS (MA-PDMS) is complete within 30 s. The crosslinking rate is three orders of magnitude larger than the conventional thermal crosslinking. The MA-PDMS membrane shows a versatile potential for liquid and gas separations, especially featuring an excellent pervaporation performance for n-butanol. Filler aggregation, the major bottleneck for the development of high-performance mixed matrix membranes (MMMs), is overcome, because the UV polymerization strategy demonstrates a freezing effect towards fillers in polymer, resulting in an extremely high-loading silicalite-1/MA-PDMS MMM with uniform particle distribution.

4.
Mater Horiz ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984427

RESUMEN

The interfacial interaction between the selective layer and porous substrate directly determines the separation performance and service lifetime of functional composite membranes. Till now, almost all reported polymeric selective layers are physically in contact with the substrate, which is unsatisfactory for long-term operation. Herein, we introduced a functional composite membrane with ultra-interfacial stability via layer integration between the polydimethylsiloxane selective layer and polyacrylonitrile substrate, where a facile light-triggered copolymerization achieved their covalent bonding. The critical load for the failure of the selective layer is 45.73 mN when testing the interfacial adhesion, i.e., 5.8 times higher than that before modification and significantly higher than previous reports. It also achieves superior pervaporation performance with a separation factor of 9.54 and membrane flux of 1245.6 g m-2 h-1 feeding a 1000 ppm phenol/water solution at 60 °C that is significantly higher than the same type of polymeric ones. Not limited to pervaporation, such a strategy sheds light on the design of highly stable composite membranes with different purposes, while the facile photo-trigged technique shows enormous scalability.

5.
Polymers (Basel) ; 14(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631833

RESUMEN

When reinforced concrete structures are subjected to impact loads, they may suddenly yield or fail, or even collapse as a whole. In this paper, the impact resistance of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) grid and engineered cementitious composites (ECC) was studied. Drop hammer impact tests were conducted on eight beams, then the finite element model was used to simulate the impact test, finally a simplified two-degree-of-freedom (TDOF) model was proposed for CFRP grid reinforced ECC layer strengthened RC beams under impact loading. The results showed that CFRP grid reinforced ECC layer significantly improved the impact resistance of RC beams. When the ECC and CFRP grid were used, the crack development was inhibited after the concrete cracked in the tensile area, avoiding the brittle damage of concrete beams with one crack to the end. Compared with the control beam, the reaction force of RC beams strengthened with CFRP grid and ECC under impact load increased by 16.2%~34.5%, the maximum mid-span displacement decreased by 16.3%~31.6% and the mid-span residual displacement decreased by 36.02%~49.53%. The finite element model and the proposed TDOF mode were demonstrated to effectively simulate the strengthened beam under impact loading.

6.
ACS Appl Mater Interfaces ; 12(28): 31887-31895, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551481

RESUMEN

Poly(dimethylsiloxane) (PDMS) membranes are widely used for bioethanol separation. However, the network cavity size r3 of PDMS membranes is generally smaller than the ethanol kinetic radius (0.225 nm), which limits the transport of ethanol molecules and weakens the pervaporation performance. Herein, we proposed a particle-driven, ultrafast-cured strategy to overcome the above key issue: (1) Incorporating particles into PDMS for preventing polymer chains from packing tightly, (2) freezing particles within a PDMS layer by the ultrafast UV-cross-linking for improving its distribution and increasing the chain extension of the polymer, and (3) covalently bonding particles with PDMS to enhance their compatibility. Consequently, r3 was increased to 0.262 nm, and an extremely high loading membrane (50 wt %) with an ultrashort curing time (20 s) was prepared, which is difficult to be realized by the conventional thermally driven approach. As a result, a separation factor of 13.4 with a total flux of 2207 g m-2 h-1 for separating ethanol from a 5 wt % aqueous solution at 60 °C was obtained. This strategy shows the feasibility of recovery of different bioalcohols and the large-scale continuous membrane preparation.

7.
Sci Total Environ ; 728: 138011, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361353

RESUMEN

The lack of electron acceptors in cathode has limited the widespread application of sediment microbial fuel cells (SMFCs). In this study, Chlorella vulgaris (C. vulgaris) was added to the cathode to produce oxygen as an electron acceptor. The synergistic effects between C. vulgaris and electrogenic microorganisms in SMFCs were investigated, and were shown to enhance biodegradation of organic matter in sediments and convert chemical energy into electrical energy. Results showed that the addition of C. vulgaris on the cathode of SMFCs significantly reduced their internal resistance. The low algae concentration SMFC group reduced the initial internal resistance by 67.4% under illumination and produced a maximum power density of 5.17 W/m3, which was 6 times higher than that of SMFCs without addition of C. vulgaris. We also obtained organic matter removal efficiencies 37.2% higher after 16 days, which accelerated the startup time for three times. It was demonstrated that IEF-N and OP, respectively, were forms of nitrogen and phosphorus removed by SMFCs. Additionally, high-throughput sequencing of microbial communities indicated that C. vulgaris increased the abundance of electrogenic bacteria (Geobacter and Desulfobulbaceae) in the anode and types of photosynthetic bacteria that support oxygen production in the cathode. The combined application of microalgae- and SMFC-based technologies offer a promising remediation approach for organically-contaminated sediments.


Asunto(s)
Fuentes de Energía Bioeléctrica , Chlorella vulgaris , Contaminantes Ambientales , Electricidad , Electrodos , Sedimentos Geológicos
8.
J Hazard Mater ; 393: 122407, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32135362

RESUMEN

Sponge iron (s-Fe0) is a potential alternative electron donor for nitrate reduction. To gain insight into the mechanism of denitrification in a constructed wetland- sponge iron coupled system (CW-Fe0 system), the removal performance and reduction characteristics of nitrate in constructed wetlands (CWs) with and without s-Fe0 application were compared. Results indicated that s-Fe0 intensified the removal of nitrate with a 6h-HRT. The nitrate removal efficiency was improved by 16-76 % with various influent NO3--N concentrations (10-30 mg L-1) and at a chemical oxygen demand(COD)/N ratio of 5. The rates of chemical denitrification were positively correlated with the dosage of s-Fe0 and negatively correlated with the influent COD concentration. 16S rDNA sequencing revealed that hydrogen-utilizing autotrophic denitrifier of Hydrogenophaga was highly enriched (accounting for 10 % of the total OTUs) only in CW-Fe0 system. The micro-environment created by s-Fe0 was suitable for heterotrophic denitrifiers of Thauera, Tessaracoccus and Simplicispira. The determination of physiological indicators for plants showed that the application of s-Fe0 causes abiotic stress to wetland plants (Canna indica L.). Nevertheless, s-Fe0 can be used as a substrate for CWs, since it allows a high-efficiency removal of nitrate by mediating chemical denitrification and hydrogen-driven autotrophic denitrification.

9.
Environ Sci Pollut Res Int ; 27(21): 25877-25885, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31586317

RESUMEN

The nitrogen removal efficiency in constructed wetlands (CWs) was largely affected by the dissolved oxygen (DO). In this study, micro-aeration with different numbers of hollow fiber membrane modules (HFMEs) was adopted to increase the oxygen availability and improve the nitrogen removal efficiency in CWs under different air temperatures and different hydraulic retention time (HRT). Compared to the plant oxygen release (ROL) of wetland plants and traditional mechanical aeration, HFME increased the oxygen availability and enhanced the nitrogen removal efficiency in CWs. The COD and NH4+-N removal efficiencies increased with the increase of the HMFE. TN removal efficiency was increased by 8~16% after the application of HFME in CWs in the high-temperature stage. However, less HFME in CW-M1 realized the highest TN removal efficiency in low- and medium-temperature stages. At low temperature after 4-day HRT, the DO concentration respectively reached 6.25 mg L-1 and 3.25 mg L-1 in the upper zone and the bottom of CW-M1. The TN removal efficiencies in the upper zone of CW-M1 (60.69%) and the bottom of CW-M1 (64.98%) were all significantly higher than those in the upper zone of CK (35.98%) and the bottom of CK (39.9%). In addition, the microbial biomass and community analyses revealed that CW-M1 showed the most nitrifying bacteria and the best metabolic activity of bacteria. HEMF in CW-M1 also increased the nitrifying capacity from 0.12 to 0.46 mg kg-1 h-1. The application of HFME in CWs accelerated the nitrification process by enhancing nitrifying bacteria and less HFME realized the highest TN removal efficiency through nitrification-denitrification processes. Graphical abstract The application of hollow fiber membrane modules in CWs enhanced the pollutants (TN and COD) removal efficiency in the process of biological nitrification-denitrification and increased the number of nitrifying bacteria.


Asunto(s)
Nitrógeno , Humedales , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Nitrificación , Eliminación de Residuos Líquidos
10.
Bioresour Technol ; 296: 122350, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31744666

RESUMEN

This study investigates the performance of a pyrite-based constructed wetland-microbial fuel cell (PCW-MFC) in chemical oxygen demand (COD), nitrate (NO3--N), total inorganic nitrogen (TIN), and total phosphorus (TP) removal and bioelectricity generation, and explores the mechanisms involved. Four microcosms were used: a constructed wetland (CW), a pyrite-based constructed wetland (PCW), a constructed wetland-microbial fuel cell (CW-MFC), and a PCW-MFC. After 180 days' operation, the PCW-MFC exhibited enhanced simultaneous nitrate and phosphorus removal and bioelectricity output. The maximum COD, NO3--N, TIN, and TP removal efficiencies in the PCW-MFC were 71.9%, 70.1%, 63.2%, and 91.2%, respectively, for a hydraulic retention time (HRT) of 6 h. The mean bioelectricity output of the PCW-MFC was 19.0-28.4% higher than that of the CW-MFC. The nitrate removal rate constant of the PCW-MFC was 1.04 d-1, which is significantly higher than those of the others. Geobacter and sulfate-reducing bacteria were enriched in the PCW-MFC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrodos , Composición Familiar , Hierro , Fósforo , Sulfuros , Aguas Residuales , Humedales
11.
Sci Total Environ ; 703: 134789, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31715467

RESUMEN

In this study, different dosages of nanoscale zero-valent iron (nZVI) were used to improve the nitrogen removal efficiency in CWs under different C/N ratios and dye stress conditions. The addition of nZVI enhanced the dye and nitrogen removal efficiencies in constructed wetlands (CWs) through chemical reduction and biological denitrification processes. However, total nitrogen (TN) and dye removal efficiencies firstly increased and then decreased with the increases of the nZVI dosage and influent COD/N (C/N) ratio. Under the influent C/N ratio of 5, the higher TN removal efficiencies (80.2%, 55.1%, and 69.14% under 25 mg/L, 50 mg/L, and 75 mg/L dye concentration, respectively) and higher COD removal efficiencies (48.3%, 74.95%, and 30.76% under 25 mg/L, 50 mg/L, and 75 mg/L dye concentration, respectively) were obtained in CWs by adding the optimal nZVI dosage (0.1 g/L). The dye removal efficiencies in CWs with nZVI at C/N = 1 (75%-91%) and at C/N = 5 (81%-97%) were all significantly higher than that in CWs without nZVI (60%-82%). Moreover, the functional bacteria for nitrogen removal in denitrification and the dye degradation (Zoogloea and Acinetobacter) were enriched in CWs with 0.1 g/L nZVI.


Asunto(s)
Humedales , Bacterias , Desnitrificación , Hierro , Nitrógeno , Eliminación de Residuos Líquidos
12.
Bioresour Technol ; 294: 122189, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31569043

RESUMEN

In this study, various modified agricultural wastes (modified canna leaves (MCL), modified rice straw (MRS) and modified peanut shells (MPS)) as solid carbon sources (SCSs) were used to remove nitrate in constructed wetlands (CWs). Then, modified SCSs combined with nZVI (SCSN) as co-electrons further enhanced both heterotrophic denitrification (HD) and autotrophic denitrification (AD) performance of CWs. The results showed that NO3--N removal efficiencies in CWs with SCSNs (75.3-91.1%) and in CWs with SCSs (63.3-65.5%) were significantly higher than that in CK-CW (47.0%). The presence of SCSs reduced the accumulation of NO2--N in CWs. Compared to the addition of SCSs, the addition of SCSNs decreased the effluent COD concentration in CWs, avoiding secondary pollution. In addition, the solid-phase denitrifiers Silanimonas and Thauera were enriched in MPS-CW. Thermomonas, an autotrophic denitrifying bacteria (ADB), and Azospira, a nitrate-reducing Fe (II) oxidation bacteria (NRFOB), exhibited high relative abundance in MPN-CW.


Asunto(s)
Desnitrificación , Humedales , Adsorción , Carbono , Nitratos , Nitrógeno
13.
Water Res ; 164: 114937, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400593

RESUMEN

Constructed wetlands coupled with a micro-electric field (CW-MEF) is a novel and efficient water treatment technology. The objective of this study was to investigate the mechanism and performance of trace metals (TMs) removal for CW-MEF systems during summer and winter. The mass distribution of TMs in plants and biofilms, physiological indices of wetland plants, and bacterial community structures on electrodes and in the rhizospheres were analyzed as well as to explore further the TM removal mechanism. Results show that the electric field intensities (EFI) of 100 and 200 mV cm-1 had a significantly promoting effect on TM removal. Maximum removal efficiencies for Cu, Zn, Cd, Co, Ni and Pb were 95.6, 80.1, 74.0, 67.1, 69.8 and 99.6%, respectively, in summer with a 5d-hydraulic retention time (HRT). An EFI of 100 mV cm-1 could alleviate the oxidative damage in plant cells by promoting the synthesis of reduced glutathione and an activity increase of catalase, thus increasing the phytoextraction for Cu, Zn and Cd. For biofilms, the MEF caused shifts in the bacterial community structures, and an EFI of 50 to 200 mV cm-1 significantly promoted the enrichment of Cu, Zn, Cd and Co by biofilms. Moreover, microorganisms related to TM tolerance and enrichment exhibited a high abundance with an EFI of 100 and 200 mV cm-1. It can be concluded that introducing MEF to CWs could intensify the TMs removal via the biological process and result in more efficient purification for TM-containing wastewater.


Asunto(s)
Metales Pesados , Oligoelementos , Purificación del Agua , Biodegradación Ambiental , Aguas Residuales , Humedales
14.
Plant Physiol Biochem ; 138: 65-79, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30852239

RESUMEN

Formaldehyde (HCHO) assimilation in broad bean (Vicia faba L. cv. YD) roots was investigated using 13C-labeled HCHO followed by 13C-NMR analysis. Results revealed that H13CHO was first oxidized to H13COOH in the roots treated with 2 mM H13CHO in a time-dependent manner. Subsequently, a massive signal peak of [2, 4-13C]citrate (Cit) and a signal peak of [2, 3-13C]succinate (Su) were observed in accompany with an enhancement in the signal intensity of [3-13C]Cit. The data suggested that the glyoxylate pathway and the tricarboxylic acid (TCA) cycle functioned simultaneously in the subsequent assimilation of H13COOH. The yield of [2, 4-13C]Cit accounted for more than 80% of the total metabolites. The activity of isocitrate lyase (ICL), a key enzyme in the glyoxylate pathway, was stimulated by HCHO in a dosage-dependent manner. As a result, [2, 4-13C]Cit production was increased significantly in YD roots treated with high concentrations (4 and 6 mM) of H13CHO. Moreover, induction of the ICL activity by methanol resulted in a simultaneous elevation in the production of [2, 4-13C]Cit and [3-13C]Cit in methanol-pretreated roots under 2 mM H13CHO stress. Pretreatment of roots with cyclosporin A, which hinders the transport of 13C-enriched compounds into mitochondria, caused a notable decline in the signal peak and yield of [2, 4-13C]Cit and consequently induced a notable accumulation of [2, 3-13C]Su and an increase in the HCO3- production (generated from H13COOH oxidation) in H13CHO-treated roots. These results suggested that the glyoxylate pathway and the TCA cycle function coordinately in HCHO assimilation in broad bean roots.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Formaldehído/metabolismo , Glioxilatos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Vicia faba/metabolismo
15.
RSC Adv ; 8(10): 5127-5135, 2018 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35542416

RESUMEN

In the current work, MCM-41/polydimethylsiloxane (PDMS) mixed matrix membrane (MMM) was prepared for effective n-butanol pervaporation from a model aqueous solution. In order to improve the compatibility between MCM-41 and PDMS, different types of silane coupling agents including n-propyltrimethoxysilane (PTMS), n-octyltrimethoxysilane (OTMS), n-dodecyltrimethoxysilane (DTMS) and n-hexadecyltrimethoxysilane (HDTMS) were used to modify the MCM-41. The results showed that the highest n-butanol separation performance was achieved by bonding 20 wt% of PTMS-modified MCM-41 with PDMS. Under these conditions, total flux of 1476 g m-2 h-1 was obtained when separating a 1.5 wt% n-butanol aqueous solution at 55 °C. The total flux increased by nearly 40% compared to the pure PDMS membrane with no obvious changes of the n-butanol separation factor at the same time. The curing process of the casting solution was also significantly improved after MCM-41 modification.

16.
Bioresour Technol ; 267: 608-617, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30056371

RESUMEN

Lacking of electron donor generally causes the low denitrification performance of constructed wetlands (CWs). Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) as novel electron donor-acceptor compounds were added in the denitrification zone of vertical flow constructed wetlands (VFCWs) to enhance the nitrogen removal. The key factors of the SA/Mt-NZVI dosage, the hydraulic retention time (HRT) of VFCWs, and the C/N ratios of influent were explored. SA/Mt-NZVI significantly improved the nitrogen (NO3--N) removal efficiency in VFCWs. When the optimal dosage of SA/Mt-NZVI was set as 2 g and the C/N was set as 6, the highest NO3--N removal efficiency was improved by 32.5 ±â€¯1.0%. The microbial community analysis of by 16S rRNA had revealed that Proteobacteria and Bacteroidetes at phylum level and Betaproteobacteria, Gammaproteobacteria, and Alphaproteobacteria at class level played an important role in nitrogen removal.


Asunto(s)
Bentonita/química , Desnitrificación , Humedales , Alginatos , Ácido Glucurónico , Ácidos Hexurónicos , Hierro , Nitrógeno , ARN Ribosómico 16S
17.
Bioresour Technol ; 267: 416-425, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30032055

RESUMEN

Biodenitrification using solid carbon sources is a cost-effective way for nitrate removal. In the study, wheat straw, cotton, poly(butylene succinate), and newspaper was chosen as the carbon source to compare the denitrification efficiency and bacterial communities in constructed wetlands. Parameters including COD, NO3--N, NO2--N and total nitrogen (TN) were analyzed. Results indicated that newspaper provided significantly higher NO3--N and TN removal efficiency than the other three solid carbon sources in low-temperature condition. Moreover, both newspaper and wheat straw allowed high NO3--N and TN removal efficiency in high-temperature condition. According to pyrosequencing analysis, denitrifying bacteria Dechloromonas and Thauera were the predominant genus in the anaerobic zone of CO- (3.92 and 2.35%, respectively), WS- (1.97 and 1.02%, respectively) and NP-CWs (1.71 and 1.31%, respectively). Genus of Levilinea was enriched in NP- (1.02%) and WS-CWs (0.91%). Furthermore, genus Paludibacter (2.69%) and Saccharofermentans (3.14%) showed high relative abundance in WS-CWs.


Asunto(s)
Desnitrificación , Humedales , Bacterias , Carbono , Procesos Heterotróficos , Nitrógeno
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda