Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neural Transm (Vienna) ; 128(10): 1577-1598, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34636961

RESUMEN

About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.


Asunto(s)
Hierro , Enfermedad de Parkinson , Humanos , Calidad de Vida , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo
2.
Cell Tissue Res ; 373(1): 297-312, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29656343

RESUMEN

Asymmetry of dopaminergic neurodegeneration and subsequent lateralisation of motor symptoms are distinctive features of Parkinson's disease compared to other forms of neurodegenerative or symptomatic parkinsonism. Even 200 years after the first description of the disease, the underlying causes for this striking clinicopathological feature are not yet fully understood. There is increasing evidence that lateralisation of disease is due to a complex interplay of hereditary and environmental factors that are reflected not only in the concept of dominant hemispheres and handedness but also in specific susceptibilities of neuronal subpopulations within the substantia nigra. As a consequence, not only the obvious lateralisation of motor symptoms occurs but also patterns of associated non-motor signs are defined, which include cognitive functions, sleep behaviour or olfaction. Better understanding of the mechanisms contributing to lateralisation of neurodegeneration and the resulting patterns of clinical phenotypes based on bilateral post-mortem brain analyses and clinical studies focusing on right/left hemispheric symptom origin will help to develop more targeted therapeutic approaches, taking into account subtypes of PD as a heterogeneous disorder.


Asunto(s)
Lateralidad Funcional/fisiología , Enfermedad de Parkinson/fisiopatología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neuronas Dopaminérgicas/patología , Contaminantes Ambientales/toxicidad , Lateralidad Funcional/efectos de los fármacos , Humanos , Actividad Motora/efectos de los fármacos , Enfermedad de Parkinson/diagnóstico por imagen
3.
J Neural Transm (Vienna) ; 119(8): 953-62, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22367437

RESUMEN

The destruction of the dopaminergic neurons in the substantia nigra (SN) and consequent depletion of striatal dopamine elicits the main movement deficits related to Parkinson's disease (PD). In the early stages of the illness, the motor symptoms are often exhibited asymmetrically. Thus, the onset of PD features starts on either the right or left side. The side of onset appears to determine the prognosis of the disorder and other features, such as right-side tremor dominance has a better prognosis in contrast to left-side dominant bradykinesia-rigidity. In addition, left-side onset of motor features is associated with cognitive decline. Therefore, an intricate relation appears to exist between the side of disease onset and progression/severity and other non-motor symptoms. Unilateral PD in turn corresponds to neuronal nigrostriatal degeneration in the contralateral hemisphere. Indeed positron emission tomography has demonstrated a positive correlation between symptom asymmetry and brain function (Hoorn et al. Parkinsonism Relat Disord 17:58-60, 2011), which corresponds to a unilateral pattern of degeneration. This phenomenon appears to be exclusive to PD. Additionally, the variation in motor symptom(s) dominance exhibited in the disorder conforms to the notion that PD is a spectrum disease with many sub-groups. Thus, clinical and post mortem studies on "lateralisation" may serve as a vital tool in understanding the mechanism(s) eliciting the characteristic destruction of the SN neurons. Additionally, it may be employed as a predictive indicator for the symptomology and prognosis of the illness thus allowing selective treatment strategies targeted at the pronounced hemispheric degeneration.


Asunto(s)
Dominancia Cerebral/fisiología , Neuronas/patología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Humanos
4.
Handb Clin Neurol ; 150: 119-127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29496135

RESUMEN

Premortem, postmortem, and storage conditions are parameters that can influence the quality and interpretation of data from studies of postmortem tissue. While many neurochemicals in the brain are relatively stable for several hours after death if stored at 4°C, the postmortem delay nevertheless becomes an important variable when examining the disease state because neurochemical levels may change with extended postmortem delay. Moreover, in the postmortem brain, neurochemical levels may also play a key role in determining the diagnosis. This is particularly true for some neurodegenerative disorders where many of the clinical features of the disease are not exclusive to one illness. It is therefore imperative to employ brain tissue of the highest quality from both nondiseased (control) and diseased brain tissue to ascertain the specific molecular and genetic mechanisms particular to the disease pathogenesis. Consequently, it would be very useful if specific markers could be employed to demonstrate and determine the quality of postmortem brain tissue that is suitable for such studies. In this chapter, the following neurochemical markers are critically reviewed as potential candidates to assess the quality of postmortem brain tissue: tryptophan levels, glutathione levels (and glutathione metabolic enzymes), enzymatic activities (glutamate decarboxylase, phosphofructokinase-1), epigenetic enzymes (acetyltransferase, methyltransferase), and tissue pH. In conclusion, the neurochemical tryptophan appears to be the most suitable candidate for assessing the integrity and quality of postmortem brain tissue. However, to optimize the quality of the samples, neuropathologic diagnostic characterization must also be employed in the interpretation and understanding of the data generated. It would also be judicious to consider as many premortem and postmortem conditions as possible as they can also affect the genetic and molecular integrity of the brain tissue.


Asunto(s)
Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Cambios Post Mortem , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda