Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Med Mycol ; 62(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38414264

RESUMEN

Candida auris poses threats to the global medical community due to its multidrug resistance, ability to cause nosocomial outbreaks and resistance to common sterilization agents. Different variants that emerged at different geographical zones were classified as clades. Clade-typing becomes necessary to track its spread, possible emergence of new clades, and to predict the properties that exhibit a clade bias. We previously reported a colony-Polymerase Chain Reaction-based, clade-identification method employing whole genome alignments and identification of clade-specific sequences of four major geographical clades. Here, we expand the panel by identifying clade 5 which was later isolated in Iran, using specific primers designed through in silico analyses.


Candida auris, a multidrug-resistant fungal pathogen, evolves as distinct geographical clades. We describe the identification of clade 5 specific DNA sequence, which was used to design primers that distinguished clade 5 from other clades, adding to the panel of the clade-identification system.


Asunto(s)
Candida , Candidiasis , Animales , Candida/genética , Candidiasis/epidemiología , Candidiasis/veterinaria , Candida auris , Reacción en Cadena de la Polimerasa/veterinaria , Genoma Fúngico , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria
2.
PLoS One ; 19(4): e0302271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630664

RESUMEN

We provide new algorithms for two tasks relating to heterogeneous tabular datasets: clustering, and synthetic data generation. Tabular datasets typically consist of heterogeneous data types (numerical, ordinal, categorical) in columns, but may also have hidden cluster structure in their rows: for example, they may be drawn from heterogeneous (geographical, socioeconomic, methodological) sources, such that the outcome variable they describe (such as the presence of a disease) may depend not only on the other variables but on the cluster context. Moreover, sharing of biomedical data is often hindered by patient confidentiality laws, and there is current interest in algorithms to generate synthetic tabular data from real data, for example via deep learning. We demonstrate a novel EM-based clustering algorithm, MMM ("Madras Mixture Model"), that outperforms standard algorithms in determining clusters in synthetic heterogeneous data, and recovers structure in real data. Based on this, we demonstrate a synthetic tabular data generation algorithm, MMMsynth, that pre-clusters the input data, and generates cluster-wise synthetic data assuming cluster-specific data distributions for the input columns. We benchmark this algorithm by testing the performance of standard ML algorithms when they are trained on synthetic data and tested on real published datasets. Our synthetic data generation algorithm outperforms other literature tabular-data generators, and approaches the performance of training purely with real data.


Asunto(s)
Algoritmos , Humanos , India , Análisis por Conglomerados
3.
R Soc Open Sci ; 11(1): 231088, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269075

RESUMEN

Transcription factor binding sites (TFBS), like other DNA sequence, evolve via mutation and selection relating to their function. Models of nucleotide evolution describe DNA evolution via single-nucleotide mutation. A stationary vector of such a model is the long-term distribution of nucleotides, unchanging under the model. Neutrally evolving sites may have uniform stationary vectors, but one expects that sites within a TFBS instead have stationary vectors reflective of the fitness of various nucleotides at those positions. We introduce 'position-specific stationary vectors' (PSSVs), the collection of stationary vectors at each site in a TFBS locus, analogous to the position weight matrix (PWM) commonly used to describe TFBS. We infer PSSVs for human TFs using two evolutionary models (Felsenstein 1981 and Hasegawa-Kishino-Yano 1985). We find that PSSVs reflect the nucleotide distribution from PWMs, but with reduced specificity. We infer ancestral nucleotide distributions at individual positions and calculate 'conditional PSSVs' conditioned on specific choices of majority ancestral nucleotide. We find that certain ancestral nucleotides exert a strong evolutionary pressure on neighbouring sequence while others have a negligible effect. Finally, we present a fast likelihood calculation for the F81 model on moderate-sized trees that makes this approach feasible for large-scale studies along these lines.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda