Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Adv Eng Softw ; 175: 103330, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36465142

RESUMEN

The COVID-19 pandemic made robot manufacturers explore the idea of combining mobile robotics with UV-C light to automate the disinfection processes. But performing this process in an optimum way introduces some challenges: on the one hand, it is necessary to guarantee that all surfaces receive the radiation level to ensure the disinfection; at the same time, it is necessary to minimize the radiation dose to avoid the damage of the environment. In this work, both challenges are addressed with the design of a complete coverage path planning (CCPP) algorithm. To do it, a novel architecture that combines the glasius bio-inspired neural network (GBNN), a motion strategy, an UV-C estimator, a speed controller, and a pure pursuit controller have been designed. One of the main issues in CCPP is the deadlocks. In this application they may cause a loss of the operation, lack of regularity and high peaks in the radiation dose map, and in the worst case, they can make the robot to get stuck and not complete the disinfection process. To tackle this problem, in this work we propose a preventive deadlock processing algorithm (PDPA) and an escape route generator algorithm (ERGA). Simulation results show how the application of PDPA and the ERGA allow to complete complex maps in an efficient way where the application of GBNN is not enough. Indeed, a 58% more of covered surface is observed. Furthermore, two different motion strategies have been compared: boustrophedon and spiral motion, to check its influence on the performance of the robot navigation.

2.
Bioinspir Biomim ; 19(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38176110

RESUMEN

Inching-locomotion caterpillars (ILAR) show impressive environmental adaptation, having high dexterity and flexibility. To design robots that mimic these abilities, a novel bioinspired robotic design (BIROD) method is presented. The method is composed by an algorithm for geometrical kinematic analysis (GEKINS) to standardize the proportional dimensions according to the insect's anatomy and obtain the kinematic chains. The approach is experimentally applied to analyze the locomotion and kinematic chain of these specimens:Geometridae-two pair of prolegs (represents 35 000 species) andPlusiinae-three pair of prolegs (represents 400 species). The obtained data indicate that the application of the proposed method permits to locate the attachment mechanisms, joints, links, and to calculate angular displacement, angular average velocity, number of degrees of freedom, and thus the kinematic chain.Geometridaein contrast toPlusiinae, shows a longer walk-stride length, a lower number of single-rotational joints in 2D (3 DOF versus 4 DOF), and a lower number of dual-rotational joints in 3D (6 DOF versus 8 DOF). The application of BIROD and GEKINS provides the forward kinematics for 35 400 ILAR species and are expected to be useful as a preliminary phase for the design of bio-inspired arthropod robots.


Asunto(s)
Lepidópteros , Procedimientos Quirúrgicos Robotizados , Robótica , Animales , Robótica/métodos , Fenómenos Biomecánicos , Locomoción
3.
Bioinspir Biomim ; 19(5)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866026

RESUMEN

This research presents a 10-year systematic review based on bibliometric analysis of the bio-inspired design of hard-bodied mobile robot mechatronic systems considering the anatomy of arthropods. These are the most diverse group of animals whose flexible biomechanics and adaptable morphology, thus, it can inspire robot development. Papers were reviewed from two international databases (Scopus and Web of Science) and one platform (Aerospace Research Central), then they were classified according to: Year of publication (January 2013 to April 2023), arthropod group, published journal, conference proceedings, editorial publisher, research teams, robot classification according to the name of arthropod, limb's locomotion support, number of legs/arms, number of legs/body segments, limb's degrees of freedom, mechanical actuation type, modular system, and environment adaptation. During the screening, more than 33 000 works were analyzed. Finally, a total of 174 studies (90 journal-type, 84 conference-type) were selected for in-depth study: Insecta-hexapods (53.8%), Arachnida-octopods (20.7%), Crustacea-decapods (16.1%), and Myriapoda-centipedes and millipedes (9.2%). The study reveals that the most active editorials are the Institute of Electrical and Electronics Engineers Inc., Springer, MDPI, and Elsevier, while the most influential researchers are located in the USA, China, Singapore, and Japan. Most works pertained to spiders, crabs, caterpillars, cockroaches, and centipedes. We conclude that 'arthrobotics' research, which merges arthropods and robotics, is constantly growing and includes a high number of relevant studies with findings that can inspire new methods to design biomechatronic systems.


Asunto(s)
Artrópodos , Bibliometría , Robótica , Animales , Robótica/instrumentación , Artrópodos/fisiología , Artrópodos/anatomía & histología , Biomimética/métodos , Diseño de Equipo , Locomoción/fisiología , Fenómenos Biomecánicos
4.
J Photochem Photobiol ; 11: 100138, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35958025

RESUMEN

SARS-CoV-2 is responsible for the COVID-19 pandemic, which has caused almost 570 million infections and over six million deaths worldwide. To help curb its spread, solutions using ultraviolet light (UV) for quick virus inactivation inside buildings without human intervention could be very useful to reduce chances of contagion. The UV dose must be sufficient to inactivate the virus considering the different materials in the room, but it should not be too high, not to degrade the environment. In the present study, we have analyzed the ability of a 254 nm wavelength UV-C lamp to inactivate dried samples of SARS-CoV-2 exposed at a distance of two meters, simulating a full-scale scenario. Our results showed that virus inactivation was extremely efficient in most tested materials, which included plastic, metal, wood, and textile, with a UV-C exposure of only 42 s (equivalent to 10 mJ/cm2). However, porous materials like medium density fibreboard, were hard to decontaminate, indicating that they should be avoided in hospital rooms and public places.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda