Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Chem Phys ; 159(21)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38047516

RESUMEN

Recent experiments related to a study concerning the adsorption of water on graphene have demonstrated the p-doping of graphene, although most of the ab initio calculations predict nearly zero doping. To shed more light on this problem, we have carried out van der Waals density functional theory calculations of water on graphene for both individual water molecules and continuous water layers with coverage ranging from one to eight monolayers. Furthermore, we have paid attention to the influence of the water molecule orientation toward graphene on its doping properties. In this article, we present the results of the band structure and the Bader charge analysis, showing the p-doping of graphene can be synergistically enhanced by putting 4-8 layers of an ice-like water structure on graphene having the water molecules oriented with oxygen atoms toward graphene.

2.
Phys Rev Lett ; 129(2): 027202, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867462

RESUMEN

We demonstrate that the physics of the F model can be approached very closely in a two-dimensional artificial magnetic system. Faraday lines spanning across the lattice and carrying a net polarization, together with chiral Faraday loops characterized by a zero magnetic susceptibility, are imaged in real space using magnetic force microscopy. Our measurements reveal the proliferation of Faraday lines and Faraday loops as the system is brought from low- to high-energy magnetic configurations. They also reveal a link between the Faraday loop density and icelike spin-spin correlations in the magnetic structure factor. Key for this Letter, the density of topological defects remains small, on the order of 1% or less, and negligible compared to the density of Faraday loops. This is made possible by replacing the spin degree of freedom used in conventional lattices of interacting nanomagnets by a micromagnetic knob, which can be finely tuned to adjust the vertex energy directly, rather than modifying the two-body interactions.

3.
Phys Rev Lett ; 125(5): 057203, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794868

RESUMEN

Spin liquids are correlated, disordered states of matter that fluctuate even at low temperatures. Experimentally, the extensive degeneracy characterizing their low-energy manifold is expected to be lifted, for example, because of dipolar interactions, leading to an ordered ground state at absolute zero. However, this is not what is usually observed, and many systems, whether they are chemically synthesized or nanofabricated, dynamically freeze before magnetic ordering sets in. In artificial realizations of highly frustrated magnets, ground state configurations, and even low-energy manifolds, thus remain out of reach for practical reasons. Here, we show how dynamical freezing can be bypassed in an artificial kagome ice. We illustrate the efficiency of our method by demonstrating that the a priori dynamically inaccessible ordered ground state and fragmented spin liquid configurations can be obtained reproducibly, imaged in real space at room temperature, and studied conveniently. We then identify the mechanism by which dynamical freezing occurs in the dipolar kagome ice.

4.
Opt Express ; 25(20): 23709-23724, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041323

RESUMEN

2D materials emerge as a viable platform for the control of light at the nanoscale. In this context the need has arisen for a fast and reliable tool capable of capturing their strictly 2D nature in 3D light scattering simulations. So far, 2D materials and their patterned structures (ribbons, discs, etc.) have been mostly treated as very thin films of subnanometer thickness with an effective dielectric function derived from their 2D optical conductivity. In this study an extension to the existing framework of the boundary element method (BEM) with 2D materials treated as a conductive interface between two media is presented. The testing of our enhanced method on problems with known analytical solutions reveals that for certain types of tasks the new modification is faster than the original BEM algorithm. Furthermore, the representation of 2D materials as an interface allows us to simulate problems in which their optical properties depend on spatial coordinates. Such spatial dependence can occur naturally or can be tailored artificially to attain new functional properties.

5.
Nanotechnology ; 28(41): 415203, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28813368

RESUMEN

In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10-7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

6.
Opt Express ; 23(9): 11855-67, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25969276

RESUMEN

We present a study of the optical properties of gold crescent-shaped antennas by means of electron energy loss spectroscopy. These structures exhibit particularly large field enhancement near their sharp features, support two non-degenerate dipolar (i.e., optically active) localised surface plasmon resonances, and are widely tunable by a choice of their shape and dimensions. Depending on the volume and shape, we resolved up to four plasmon resonances in metallic structures under study in the energy range of 0.8 - 2.4 eV: two dipolar and quadrupolar mode and a multimodal assembly. The boundary-element-method calculations reproduced the observed spectra and helped to identify the character of the resonances. The two lowest modes are of particular importance owing to their dipolar nature. Remarkably, they are both concentrated near the tips of the crescent, spectrally well resolved and their energies can be tuned between 0.8 - 1.5 eV and 1.2 - 2.0 eV, respectively. As the lower spectral range covers the telecommunication wavelengths 1.30 and 1.55 µm, we envisage the possible use of such nanostructures in infrared communication technology.

7.
J Phys Condens Matter ; 33(2): 025002, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-32906101

RESUMEN

Motivated by experimental results on transport properties of graphene covered by gallium atoms, the density functional theory study of clustering of gallium atoms on graphene (up to a size of 8 atoms) is presented. The paper explains a rapid initial increase of graphene electron doping by individual Ga atoms with Ga coverage, which is continually reduced to zero, when bigger multiple-atom clusters have been formed. According to density functional theory calculations with and without the van der Waals correction, gallium atoms start to form a three-dimensional cluster from five and three atoms, respectively. The results also explain an easy diffusion of Ga atoms while forming clusters caused by a small diffusion barrier of 0.11 eV. Moreover, the calculations show this barrier can be additionally reduced by the application of an external electric field, which was simulated by the ionization of graphene. This effect offers a unique possibility to control the cluster size in experiments only by applying a gate-voltage to the graphene in a field-effect transistor geometry and thereby without growth temperature assistance.

8.
Nanotechnology ; 21(14): 145304, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20215654

RESUMEN

Focused ion beam (FIB) milling has been used to fabricate magnetic nanostructures (wires, squares, discs) from single magnetic layers (Co, permalloy) and spin-valve (permalloy/Cu/Co) multilayers (thicknesses 5-50 nm) prepared by ion beam sputtering deposition. Milled surfaces of metallic thin films typically exhibit residual roughness, which is also transferred onto the edges of the milled patterns. This can lead to domain wall pinning and influence the magnetization behaviour of the nanostructures. We have investigated the milling process and the influence of the FIB parameters (incidence angle, dwell time, overlap and ion beam current) on the roughness of the milled surface. It has been found that the main reasons for increased roughness are different sputter yields for various crystallographic orientations of the grains in polycrystalline magnetic thin films. We have found that the oblique ion beam angle, long dwell time and overlap < 1 are favourable parameters for suppression of this intrinsic roughness. Finally, we have shown how to determine the ion dose necessary to mill through the whole thin film up to the silicon substrate from scanning electron microscopy (SEM) images only.

9.
Sci Rep ; 9(1): 4004, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850673

RESUMEN

We present an experimental and theoretical study of Babinet's principle of complementarity in plasmonics. We have used spatially-resolved electron energy loss spectroscopy and cathodoluminescence to investigate electromagnetic response of elementary plasmonic antenna: gold discs and complementary disc-shaped apertures in a gold layer. We have also calculated their response to the plane wave illumination. While the qualitative validity of Babinet's principle has been confirmed, quantitative differences have been found related to the energy and quality factor of the resonances and the magnitude of related near fields. In particular, apertures were found to exhibit stronger interaction with the electron beam than solid antennas, which makes them a remarkable alternative of the usual plasmonic-antennas design. We also examine the possibility of magnetic near field imaging based on the Babinet's principle.

10.
Nat Nanotechnol ; 8(5): 341-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23603985

RESUMEN

Magnetic vortices are characterized by the sense of in-plane magnetization circulation and by the polarity of the vortex core. With each having two possible states, there are four possible stable magnetization configurations that can be utilized for a multibit memory cell. Dynamic control of vortex core polarity has been demonstrated using both alternating and pulsed magnetic fields and currents. Here, we show controlled dynamic switching of spin circulation in vortices using nanosecond field pulses by imaging the process with full-field soft X-ray transmission microscopy. The dynamic reversal process is controlled by far-from-equilibrium gyrotropic precession of the vortex core, and the reversal is achieved at significantly reduced field amplitudes when compared with static switching. We further show that both the field pulse amplitude and duration required for efficient circulation reversal can be controlled by appropriate selection of the disk geometry.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda