Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Cell Rep ; 35(9): 1907-16, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27251124

RESUMEN

KEY MESSAGE: Overexpression of both native and mutant forms of AtCPK1 in Rubia cordifolia cells increased anthraquinone production and transcript abundance of the RcIPPI, RcOSBL, RcOSBS , and RcICS genes to different extents. Calcium-dependent protein kinases (CDPKs) are involved in various cell processes and are regulated by a calcium signal system. CDPKs also function in plant defense against stress factors such as pathogens, temperature, and salinity. In this study, we compared the effect of heterologous expression of two forms of the Arabidopsis AtCPK1 gene, native and constitutively active (Ca(2+)-independent), on anthraquinone production in transgenic Rubia cordifolia cells. Significant qualitative and quantitative differences were found in the content of anthraquinone derivatives in control and AtCPK1-transgenic calli. Expression of the AtCPK1 gene increased anthraquinone production by 3 and 12 times for native and constitutively active forms, respectively, compared with control cells. In addition, we identified and quantified the expression of genes encoding key enzymes of the anthraquinone biosynthesis pathway, including isochorismate synthase (ICS), o-succinylbenzoate synthase (OSBS), o-succinylbenzoate ligase (OSBL), and isopentenyl diphosphate isomerase (IPPi). In all AtCPK1-transgenic cell lines, expression of ICS, OSBS, OSBL, and IPPi increased considerably at 14-15 days of subculture and decreased at the end of cultivation (30 days). The results suggest that both native and constitutively active AtCPK1 forms induced anthraquinone accumulation at the logarithmic growth stage via enhancement of expression of genes involved in the metabolism of anthraquinones or their regulatory mechanisms.


Asunto(s)
Antraquinonas/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Proteínas Quinasas/genética , Rubia/genética , Rubia/metabolismo , Transformación Genética , Proteínas de Arabidopsis/metabolismo , Biomasa , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas , Espectrometría de Masas , Fenotipo , Plantas Modificadas Genéticamente , Proteínas Quinasas/metabolismo , Rubia/crecimiento & desarrollo
2.
Plant Physiol Biochem ; 159: 372-382, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33444896

RESUMEN

Calcium-dependent protein kinases (CDPKs) are essential regulators of plant growth and development, biotic and abiotic stress responses. Inactivation of the auto-inhibitory domain (AID) of CDPKs provides the constitutive activity. This study investigated the effect of overexpressed native and constitutive active (AtCPK1-Ca) forms of the AtCPK1 gene on abiotic stress tolerance and the ROS/redox system in Rubia cordifolia transgenic callus lines. Overexpression of the native AtCPK1 increased tolerance to salinity and cold almost in two times, when AtCPK1-Ca - in three times compare to control culture. A more interesting effect of overexpression of the AtCPK1 and AtCPK1-Ca was observed for heat resistance. The native form of AtCPK1 increased resistance to heating by 45%, while the AtCPK1-Ca increased by 80%. At the same time, another type of mutation of the AID (AtCPK1-Na, not active) did not affect the tolerance of the cell culture to stresses. We suppose, in this process, the ROS/redox system might be involved. Levels of intracellular ROS, ROS-generating enzymes expression and activities (Rbohs, Prx) and ROS-detoxifying enzymes (SOD, Cat, Apx and Prx) changed in a coordinated manner and in strict interconnection, depending of the callus growth phase and correlated with improved stress tolerance caused by AtCPK1. Because overexpression of both the AtCPK1 and AtCPK1-Ca did not significantly change callus growth, we propose that inactivation of AID of the AtCPK1 or its ortholog, might be an interesting instrument for improvement of plant cells resistance to abiotic stress.


Asunto(s)
Arabidopsis , Rubia , Tolerancia a la Sal , Termotolerancia , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Dominios Proteicos/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rubia/genética , Rubia/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Termotolerancia/genética
3.
Plant Physiol Biochem ; 165: 104-113, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34034156

RESUMEN

Calcium-dependent protein kinases (CDPKs) are Ca2+ decoders in plants. AtCPK1 is a positive regulator in the plant response to biotic and abiotic stress. Inactivation of the autoinhibitory domain of AtCPK1 in the mutated form KJM23 provides constitutive activity of the kinase. In the present study, we investigated the effect of overexpressed native and mutant KJM23 forms on salinity tolerance in Nicotiana tabacum. Overexpression of native AtCPK1 provided tobacco resistance to 120 mM NaCl during germination and 180 mM NaCl during long-term growth, while the resistance of plants increased to 240 mM NaCl during both phases of plant development when transformed with KJM23. Mutation in the junction KJM4, which disrupted Ca2+ induced activation, completely nullified the acquired salt tolerance up to levels of normal plants. Analysis by confocal microscopy showed that under high salinity conditions, overexpression of AtCPK1 and KJM23 inhibited reactive oxygen species (ROS) accumulation to levels observed in untreated plants. Quantitative real-time PCR analysis showed that overexpression of AtCPK1 and KJM23 was associated with changes in expression of genes encoding heat shock factors. In all cases, the KJM23 mutation enhanced the effect of AtCPK1, while the KJM4 mutation reduced it to the control level. We suggest that the autoinhibitory domains in CDPKs could be promising targets for manipulation in engineering salt-tolerant plants.


Asunto(s)
Nicotiana , Tolerancia a la Sal , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo
4.
J Biotechnol ; 306: 38-46, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31526834

RESUMEN

The RolA protein belongs to the RolB class of plant T-DNA oncogenes, and shares structural similarity with the papilloma virus E2 DNA-binding domain. It has potentially as an inducer of plant secondary metabolism, although its role in biotechnology has yet to be realised. In this investigation, a Rubia cordifolia callus culture transformed with the rolA plant oncogene for more than 10 years was analysed. Expression of the rolA gene in the callus line was stable during long-term cultivation, and growth parameters were both elevated and stable, exceeding those of the non-transformed control culture. The rolA-transformed calli not only demonstrated remarkably stable growth, but also the ability to increase the yield of anthraquinones (AQs) in long-term cultivation. After ten years of cultivating rolA callus lines, we observed an activation of AQ biosynthesis from 200 mg/l to 874 mg/l. The increase was mainly due to activation of ruberitrinic acid biosynthesis. The expression of key AQ biosynthesis genes was strongly activated in rolA-transgenic calli. We compared the effects of the rolA gene with those of the rolB gene, which was previously considered the most potent inducer of secondary metabolism, and showed that rolA was more productive under conditions of long-term cultivation.


Asunto(s)
Antraquinonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Oncogénicas/genética , Rubia/genética , Rubia/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Línea Celular , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Oncogénicas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Rubia/citología , Rubia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda