Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 158(2): 383-396, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25018103

RESUMEN

Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination. Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces excessive postnatal white matter angiogenesis in vivo and directly stimulates endothelial cell proliferation in vitro. Conversely, OPC-specific HIF1/2α loss of function leads to insufficient angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity, and the onset of myelination in mammalian forebrain.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Diferenciación Celular , Cuerpo Calloso/metabolismo , Células Endoteliales/citología , Técnicas In Vitro , Ratones , Neovascularización Fisiológica , Células-Madre Neurales , Oxígeno/metabolismo , Comunicación Paracrina , Proteínas Proto-Oncogénicas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas Wnt/metabolismo
2.
Nature ; 568(7752): 336-343, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30996318

RESUMEN

The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.


Asunto(s)
Autopsia , Encéfalo/irrigación sanguínea , Encéfalo/citología , Circulación Cerebrovascular , Microcirculación , Porcinos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Caspasa 3/metabolismo , Supervivencia Celular , Arterias Cerebrales/fisiología , Modelos Animales de Enfermedad , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Inflamación/metabolismo , Inflamación/patología , Neuroglía/citología , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Perfusión , Daño por Reperfusión/prevención & control , Porcinos/sangre , Sinapsis/metabolismo , Sinapsis/patología , Factores de Tiempo , Vasodilatación
3.
Brain ; 144(8): 2361-2374, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34145876

RESUMEN

Autoantibodies are a hallmark of numerous neurological disorders, including multiple sclerosis, autoimmune encephalitides and neuromyelitis optica. Whilst well understood in peripheral myeloid cells, the pathophysiological significance of autoantibody-induced Fc receptor signalling in microglia remains unknown, in part due to the lack of a robust in vivo model. Moreover, the application of therapeutic antibodies for neurodegenerative disease also highlights the importance of understanding Fc receptor signalling in microglia. Here, we describe a novel in vivo experimental paradigm that allows for selective engagement of Fc receptors within the CNS by peripherally injecting anti-myelin oligodendrocyte glycoprotein (MOG) monoclonal antibodies into normal wild-type mice. MOG antigen-bound immunoglobulins were detected throughout the CNS and triggered a rapid and tightly regulated proliferative response in both brain and spinal cord microglia. This microglial response was abrogated when anti-MOG antibodies were deprived of Fc receptor effector function or injected into Fcγ receptor knockout mice and was associated with the downregulation of Fc receptors in microglia, but not peripheral myeloid cells, establishing that this response was dependent on central Fc receptor engagement. Downstream of the Fc receptors, BTK was a required signalling node for this response, as microglia proliferation was amplified in BtkE41K knock-in mice expressing a constitutively active form of the enzyme and blunted in mice treated with a CNS-penetrant small molecule inhibitor of BTK. Finally, this response was associated with transient and stringently regulated changes in gene expression predominantly related to cellular proliferation, which markedly differed from transcriptional programs typically associated with Fc receptor engagement in peripheral myeloid cells. Together, these results establish a physiologically-meaningful functional response to Fc receptor and BTK signalling in microglia, while providing a novel in vivo tool to further dissect the roles of microglia-specific Fc receptor and BTK-driven responses to both pathogenic and therapeutic antibodies in CNS homeostasis and disease.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Autoanticuerpos/inmunología , Encéfalo/patología , Microglía/patología , Glicoproteína Mielina-Oligodendrócito/inmunología , Receptores Fc/metabolismo , Médula Espinal/patología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Proliferación Celular/fisiología , Ratones , Microglía/inmunología , Microglía/metabolismo , Médula Espinal/inmunología , Médula Espinal/metabolismo
4.
Ann Neurol ; 81(4): 560-571, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28253550

RESUMEN

OBJECTIVE: Neonatal white matter injury (NWMI) is a lesion found in preterm infants that can lead to cerebral palsy. Although antagonists of bone morphogenetic protein (BMP) signaling, such as Noggin, promote oligodendrocyte precursor cell (OPC) production after hypoxic-ischemic (HI) injury, the downstream functional targets are poorly understood. The basic helix-loop-helix protein, oligodendrocyte transcription factor 1 (Olig1), promotes oligodendrocyte (OL) development and is essential during remyelination in adult mice. Here, we investigated whether Olig1 function is required downstream of BMP antagonism for response to injury in the neonatal brain. METHODS: We used wild-type and Olig1-null mice subjected to neonatal stroke and postnatal neural progenitor cultures, and we analyzed Olig1 expression in human postmortem samples from neonates that suffered HI encephalopathy (HIE). RESULTS: Olig1-null neonatal mice showed significant hypomyelination after moderate neonatal stroke. Surprisingly, damaged white matter tracts in Olig1-null mice lacked Olig2+ OPCs, and instead proliferating neuronal precursors and GABAergic interneurons were present. We demonstrate that Noggin-induced OPC production requires Olig1 function. In postnatal neural progenitors, Noggin governs production of OLs versus interneurons through Olig1-mediated repression of Dlx1/2 transcription factors. Additionally, we observed that Olig1 and the BMP signaling effector, phosphorylated SMADs (Sma- and Mad-related proteins) 1, 5, and 8, were elevated in the subventricular zone of human infants with HIE compared to controls. INTERPRETATION: These findings indicate that Olig1 has a critical function in regulation of postnatal neural progenitor cell production in response to Noggin. Ann Neurol 2017;81:560-571.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales
5.
ACS Med Chem Lett ; 15(5): 714-721, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38746903

RESUMEN

We herein report the discovery, synthesis, and evolution of a series of indazoles and azaindazoles as CNS-penetrant IRAK4 inhibitors. Described is the use of structure-based and property-based drug design strategically leveraged to guide the property profile of a key series into a favorable property space while maintaining potency and selectivity. Our rationale that led toward functionalities with potency improvements, CNS-penetration, solubility, and favorable drug-like properties is portrayed. In vivo evaluation of an advanced analogue showed significant, dose-dependent modulation of inflammatory cytokines in a mouse model. In pursuit of incorporating a highly engineered bridged ether that was crucial to metabolic stability in this series, significant synthetic challenges were overcome to enable the preparation of the analogues.

6.
J Med Chem ; 67(10): 8383-8395, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38695469

RESUMEN

Interleukin receptor associated kinase 4 (IRAK4) plays an important role in innate immune signaling through Toll-like and interleukin-1 receptors and represents an attractive target for the treatment of inflammatory diseases and cancer. We previously reported the development of a potent, selective, and brain-penetrant imidazopyrimidine series of IRAK4 inhibitors. However, lead molecule BIO-7488 (1) suffered from low solubility which led to variable PK, compound accumulation, and poor in vivo tolerability. Herein, we describe the discovery of a series of pyridone analogs with improved solubility which are highly potent, selective and demonstrate desirable PK profiles including good oral bioavailability and excellent brain penetration. BIO-8169 (2) reduced the in vivo production of pro-inflammatory cytokines, was well tolerated in safety studies in rodents and dog at margins well above the predicted efficacious exposure and showed promising results in a mouse model for multiple sclerosis.


Asunto(s)
Encéfalo , Quinasas Asociadas a Receptores de Interleucina-1 , Inhibidores de Proteínas Quinasas , Animales , Perros , Masculino , Ratones , Ratas , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Descubrimiento de Drogas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/síntesis química , Pirimidinas/uso terapéutico , Relación Estructura-Actividad
7.
J Neurosci ; 32(26): 8930-9, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22745493

RESUMEN

Premature children born with very low birth weight (VLBW) can suffer chronic hypoxic injury as a consequence of abnormal lung development and cardiovascular abnormalities, often leading to grave neurological and behavioral consequences. Emerging evidence suggests that environmental enrichment improves outcome in animal models of adult brain injury and disease; however, little is known about the impact of environmental enrichment following developmental brain injury. Intriguingly, data on socio-demographic factors from longitudinal studies that examined a number of VLBW cohorts suggest that early environment has a substantial impact on neurological and behavioral outcomes. In the current study, we demonstrate that environmental enrichment significantly enhances behavioral and neurobiological recovery from perinatal hypoxic injury. Using a genetic fate-mapping model that allows us to trace the progeny of GFAP+ astroglial cells, we show that hypoxic injury increases the proportion of astroglial cells that attain a neuronal fate. In contrast, environmental enrichment increases the stem cell pool, both through increased stem cell proliferation and stem cell survival. In mice subjected to hypoxia and subsequent enrichment there is an additive effect of both conditions on hippocampal neurogenesis from astroglia, resulting in a robust increase in the number of neurons arising from GFAP+ cells by the time these mice reach full adulthood.


Asunto(s)
Diferenciación Celular/fisiología , Trastornos del Conocimiento/enfermería , Trastornos del Conocimiento/patología , Ambiente , Proteína Ácida Fibrilar de la Glía/metabolismo , Células Madre/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Recuento de Células , Diferenciación Celular/genética , Trastornos del Conocimiento/etiología , Desoxiuridina/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Estrógenos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hipoxia/complicaciones , Idoxuridina/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuroglía/metabolismo , Receptores de Estrógenos/genética , Células Madre/metabolismo , Tamoxifeno/farmacología
8.
J Neurosci ; 31(25): 9205-21, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21697371

RESUMEN

Glial fibrillary acidic protein-positive (GFAP(+)) cells give rise to new neurons in the neurogenic niches; whether they are able to generate neurons in the cortical parenchyma is not known. Here, we use genetic fate mapping to examine the progeny of GFAP(+) cells after postnatal hypoxia, a model for the brain injury observed in premature children. After hypoxia, immature cortical astroglia underwent a shift toward neuronal fate and generated cortical excitatory neurons that appeared synaptically integrated into the circuitry. Fate-mapped cortical GFAP(+) cells derived ex vivo from hypoxic, but not normoxic, mice were able to form pluripotent, long-term self-renewing neurospheres. Similarly, exposure to low oxygen conditions in vitro induced stem-cell-like potential in immature cortical GFAP(+) cells. Our data support the conclusion that hypoxia promotes pluripotency in GFAP(+) cells in the cortical parenchyma. Such plasticity possibly explains the cognitive recovery found in some preterm children.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Diferenciación Celular , Células Cultivadas , Ratones , Ratones Transgénicos
9.
Mol Cell Neurosci ; 44(4): 362-73, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20470892

RESUMEN

It is well established that cerebellar granule cell precursors (GCPs) initially derive from progenitors in the rhombic lip of the embryonic cerebellar primordium. GCPs proliferate and migrate tangentially across the cerebellum to form the external granule cell layer (EGL) in late embryogenesis and early postnatal development. It is unclear whether GCPs are specified exclusively in the embryonic rhombic lip or whether their precursor persists in the neonate. Using transgenic mice expressing DsRed under the human glial fibrillary acidic protein (hGFAP) promoter, we found 2 populations of DsRed(+) cells in the EGL in the first postnatal week defined by bright and faint DsRed-fluorescent signal. Bright DsRed(+) cells have a protein expression profile and electrophysiological characteristics typical of astrocytes, but faint DsRed(+) cells in the EGL and internal granule cell layer (IGL) express markers and physiological properties of immature neurons. To determine if these astroglial cells gave rise to GCPs, we genetically tagged them with EGFP or betagal reporter genes at postnatal day (P)3-P5 using a hGFAP promoter driven inducible Cre recombinase. We found that GFAP promoter(+) cells in the EGL are proliferative and express glial and neural stem cell markers. In addition, immature granule cells (GCs) en route to the IGL at P12 as well as GCs in the mature cerebellum, 30days after recombination, express the reporter protein, suggesting that GFAP promoter(+) cells in the EGL generate a subset of granule cells. The identification of glial cells which function as neuronal progenitor cells profoundly impacts our understanding of cellular plasticity in the developing cerebellum.


Asunto(s)
Astrocitos/metabolismo , Cerebelo/citología , Proteína Ácida Fibrilar de la Glía/metabolismo , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Linaje de la Célula/fisiología , Genes Reporteros , Proteínas Fluorescentes Verdes , Integrasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/citología , Regiones Promotoras Genéticas/genética , Células Madre/citología , Factores de Tiempo , beta-Galactosidasa
10.
J Neurosci ; 29(4): 1202-11, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19176828

RESUMEN

Chronic postnatal hypoxia causes an apparent loss of cortical neurons that is reversed during recovery (Fagel et al., 2006). The cellular and molecular mechanisms underlying this plasticity are not understood. Here, we show that chronic hypoxia from postnatal days 3 (P3) to 10 causes a 30% decrease in cortical neurons and a 24% decrease in cortical volume. T-brain-1 (Tbr1)(+) and SMI-32(+) excitatory neuron numbers were completely recovered 1 month after the insult, but the mice showed a residual deficit in Parvalbumin(+) and Calretinin(+) GABAergic interneurons. In contrast, hypoxic mice carrying a disrupted fibroblast growth factor receptor-1 (Fgfr1) gene in GFAP+ cells [Fgfr1 conditional knock-out (cKO)], demonstrated a persistent loss of excitatory cortical neurons and a worsening of the interneuron defect. Labeling proliferating progenitors at P17 revealed increased generation of cortical NeuN(+) and Tbr1(+) excitatory neurons in wild-type mice subjected to hypoxic insult, whereas Fgfr1 cKO failed to mount a cortical neurogenetic response. Hypoxic wild-type mice also demonstrated a twofold increase in cell proliferation in the subventricular zone (SVZ) at P17 and a threefold increase in neurogenesis in the olfactory bulb (OB) at P48, compared with normoxic mice. In contrast, Fgfr1 cKO mice had decreased SVZ cell proliferation and curtailed reactive neurogenesis in the OB. Thus, the activation of FGFR-1 in GFAP+ cells is required for neuronal recovery after neonatal hypoxic injury, which is attributable in part to enhanced cortical and OB neurogenesis. In contrast, there is incomplete recovery of inhibitory neurons after injury, which may account for persistent behavioral deficits.


Asunto(s)
Corteza Cerebral/patología , Hipoxia/patología , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Proliferación Celular , Corteza Cerebral/fisiopatología , Creatinina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Hipoxia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Bulbo Olfatorio , Parvalbúminas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box
11.
Stem Cells ; 27(5): 1152-63, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19418461

RESUMEN

Neural stem or progenitor cells (NSC/NPCs) able to generate the different neuron and glial cell types of the cerebellum have been isolated in vitro, but their identity and location in the intact cerebellum are unclear. Here, we use inducible Cre recombination in GFAPCreER(T2) mice to irreversibly activate reporter gene expression at P2 (postnatal day 2), P5, and P12 in cells with GFAP (glial fibrillary acidic protein) promoter activity and analyze the fate of genetically tagged cells in vivo. We show that cells tagged at P2-P5 with beta-galactosidase or enhanced green fluorescent proteins reporter genes generate at least 30% of basket and stellate GABAergic interneurons in the molecular layer (ML) and that they lose their neurogenic potential by P12, after which they generate only glia. Tagged cells in the cerebellar white matter (WM) were initially GFAP/S100beta+ and expressed the NSC/NPCs proteins LeX, Musashi1, and Sox2 in vivo. One week after tagging, reporter+ cells in the WM upregulated the neuronal progenitor markers Mash1, Pax2, and Gad-67. These Pax2+ progenitors migrated throughout the cerebellar cortex, populating the ML and leaving the WM by P18. These data suggest that a pool of GFAP/S100beta+ glial cells located in the cerebellar WM generate a large fraction of cerebellar interneurons for the ML within the first postnatal 12 days of cerebellar development. This restricted critical period implies that powerful inhibitory factors may restrict their fate potential in vivo at later stages of development.


Asunto(s)
Cerebelo/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Interneuronas/metabolismo , Regiones Promotoras Genéticas/genética , Células Madre/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Biomarcadores/metabolismo , Linaje de la Célula/efectos de los fármacos , Cerebelo/citología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Integrasas/metabolismo , Interneuronas/citología , Interneuronas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Recombinación Genética/genética , Células Madre/citología , Células Madre/efectos de los fármacos , Tamoxifeno/farmacología , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 104(51): 20558-63, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-18077357

RESUMEN

The lifelong addition of neurons to the hippocampus is a remarkable form of structural plasticity, yet the molecular controls over proliferation, neuronal fate determination, survival, and maturation are poorly understood. Expression of Notch1 was found to change dynamically depending on the differentiation state of neural precursor cells. Through the use of inducible gain- and loss-of-function of Notch1 mice we show that this membrane receptor is essential to these distinct processes. We found in vivo that activated Notch1 overexpression induces proliferation, whereas gamma-secretase inhibition or genetic ablation of Notch1 promotes cell cycle exit, indicating that the level of activated Notch1 regulates the magnitude of neurogenesis from postnatal progenitor cells. Abrogation of Notch signaling in vivo or in vitro leads to a transition from neural stem or precursor cells to transit-amplifying cells or neurons. Further, genetic Notch1 manipulation modulates survival and dendritic morphology of newborn granule cells. These results provide evidence for the expansive prevalence of Notch signaling in hippocampal morphogenesis and plasticity, suggesting that Notch1 could be a target of diverse traumatic and environmental modulators of adult neurogenesis.


Asunto(s)
Dendritas/ultraestructura , Giro Dentado/crecimiento & desarrollo , Neuronas/ultraestructura , Receptor Notch1/fisiología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Recuento de Células , Proliferación Celular , Giro Dentado/citología , Proteínas Fluorescentes Verdes , Hipocampo/crecimiento & desarrollo , Ratones , Ratones Noqueados , Plasticidad Neuronal , Neuronas/fisiología , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/genética , Transducción de Señal
13.
J Pediatr ; 152(4): 513-20, 520.e1, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18346506

RESUMEN

OBJECTIVES: To more precisely examine regional and subregional microstructural brain changes associated with preterm birth. STUDY DESIGN: We obtained brain volumes from 29 preterm children, age 12 years, with no ultrasound scanning evidence of intraventricular hemorrhage or cystic periventricular leukomalacia in the newborn period, and 22 age- and sex-matched term control subjects. RESULTS: Preterm male subjects demonstrated significantly lower white matter volumes in bilateral cingulum, corpus callosum, corticospinal tract, prefrontal cortex, superior and inferior longitudinal fasciculi compared with term male subjects. Gray matter volumes in prefrontal cortex, basal ganglia, and temporal lobe also were significantly reduced in preterm male subjects. Brain volumes of preterm female subjects were not significantly different from those of term female control subjects. Voxel-based morphometry results were not correlated with perinatal variables or cognitive outcome. Higher maternal education was associated with higher cognitive performance in preterm male subjects. CONCLUSIONS: Preterm male children continue to demonstrate abnormal neurodevelopment at 12 years of age. However, brain morphology in preterm female children may no longer differ from that of term female children. The neurodevelopmental abnormalities we detected in preterm male subjects appear to be relatively diffuse, involving multiple neural systems. The relationship between aberrant neurodevelopment and perinatal variables may be mediated by genetic factors, environmental factors, or both reflected in maternal education level.


Asunto(s)
Encéfalo/anatomía & histología , Recien Nacido Prematuro , Inteligencia , Peso al Nacer , Encéfalo/crecimiento & desarrollo , Estudios de Casos y Controles , Hemorragia Cerebral/prevención & control , Niño , Trastornos del Conocimiento , Femenino , Estudios de Seguimiento , Edad Gestacional , Humanos , Indometacina/uso terapéutico , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Análisis de Regresión , Factores Sexuales
14.
J Neurosci ; 26(33): 8609-21, 2006 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16914687

RESUMEN

To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER(T2)) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER(T2)) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells with reporter genes. Three days after recombination, reporter-tagged cells were quiescent astroglial cells that expressed the stem cell marker LeX in the subventricular zone (SVZ) and dentate gyrus (DG). After 2-4 weeks, the tagged GFAP lineage included proliferating progenitors expressing the neuronal marker Dcx (Doublecortin) in the SVZ and the DG. After 4 weeks, the GFAP lineage generated mature neurons in the olfactory bulb (OB), DG, and, strikingly, also in the cerebral cortex. A major portion of all neurons in the DG and OB born at the end of the first postnatal week were generated from GFAP+ cells. In addition to neurons, mature oligodendrocytes and astrocytes populating the cerebral cortex and white matter were also the progeny of GFAP+ astroglial ancestors. Thus, genetic fate mapping of postnatal GFAP+ cells reveals that they seed the postnatal brain with neural progenitors/stem cells that in turn give rise to neural precursors and their mature neuronal and oligodendrocytic progeny in many CNS regions, including the cerebral cortex.


Asunto(s)
Animales Recién Nacidos/fisiología , Astrocitos/citología , Diferenciación Celular , Linaje de la Célula , Neuronas/citología , Células Madre/citología , Animales , Animales Recién Nacidos/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Ventrículos Cerebrales , Proteína Doblecortina , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Integrasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Bulbo Olfatorio/citología , Oligodendroglía/citología , Regiones Promotoras Genéticas , Recombinación Genética , Transgenes
15.
Neuroscientist ; 13(2): 173-85, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404377

RESUMEN

Three main cellular components have been described in the CNS: neurons, astrocytes, and oligodendrocytes. In the past 10 years, lineage studies first based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the prenatal and postnatal CNS have proposed that astroglial cells can be progenitors for neurons and oligodendrocytes. Hence, the population of astroglial cells is increasingly recognized as heterogeneous and diverse, encompassing cell types performing widely different roles in development and plasticity. Astroglial cells populating the neurogenic niches increase their proliferation after perinatal injury and in young mice can differentiate into neurons and oligodendrocytes that migrate to the cerebral cortex, replacing the cells that are lost. Although much remains to be learned about this process, it appears that the up-regulation of the Fibroblast growth factor receptor is critical for mediating the injury-induced increase in cell division and perhaps for the neuronal differentiation of astroglial cells.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Sistema Nervioso Central/crecimiento & desarrollo , Células Madre/metabolismo , Animales , Astrocitos/citología , Proliferación Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Humanos , Regeneración Nerviosa/genética , Plasticidad Neuronal/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Células Madre/citología
16.
Neuron ; 89(2): 248-68, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26796689

RESUMEN

The human CNS follows a pattern of development typical of all mammals, but certain neurodevelopmental features are highly derived. Building the human CNS requires the precise orchestration and coordination of myriad molecular and cellular processes across a staggering array of cell types and over a long period of time. Dysregulation of these processes affects the structure and function of the CNS and can lead to neurological or psychiatric disorders. Recent technological advances and increased focus on human neurodevelopment have enabled a more comprehensive characterization of the human CNS and its development in both health and disease. The aim of this review is to highlight recent advancements in our understanding of the molecular and cellular landscapes of the developing human CNS, with focus on the cerebral neocortex, and the insights these findings provide into human neural evolution, function, and dysfunction.


Asunto(s)
Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Neurogénesis/fisiología , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Sistema Nervioso Central/embriología , Humanos , Trastornos del Neurodesarrollo/patología , Organogénesis/fisiología
17.
Neuron ; 89(6): 1208-1222, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26924435

RESUMEN

Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.


Asunto(s)
Encéfalo , Diferenciación Celular/genética , Síndrome de Down/patología , Regulación del Desarrollo de la Expresión Génica/genética , Vaina de Mielina/metabolismo , Oligodendroglía/patología , Potenciales de Acción/genética , Adolescente , Adulto , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Diferenciación Celular/fisiología , Niño , Preescolar , Cromosomas Humanos Par 17/genética , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Transgénicos , Mosaicismo , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Conducción Nerviosa/genética , Cambios Post Mortem , Trisomía/genética , Sustancia Blanca/patología , Sustancia Blanca/ultraestructura , Adulto Joven
18.
Nat Neurosci ; 17(4): 506-12, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24609463

RESUMEN

In colon cancer, mutation of the Wnt repressor APC (encoding adenomatous polyposis coli) leads to a state of aberrant and unrestricted high-activity signaling. However, the relevance of high Wnt tone in non-genetic human disease is unknown. Here we demonstrate that distinct functional states of Wnt activity determine oligodendrocyte precursor cell (OPC) differentiation and myelination. Mouse OPCs with genetic Wnt dysregulation (high tone) express multiple genes in common with colon cancer, including Lef1, Sp5, Ets2, Rnf43 and Dusp4. Surprisingly, we found that OPCs in lesions of hypoxic human neonatal white matter injury upregulated markers of high Wnt activity and lacked expression of APC. We also found that lack of Wnt repressor tone promoted permanent white matter injury after mild hypoxic insult. These findings suggest a state of pathological high-activity Wnt signaling in human disease tissues that lack predisposing genetic mutation.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Neoplasias del Colon/fisiopatología , Hipoxia/metabolismo , Leucoencefalopatías/metabolismo , Oligodendroglía/fisiología , Proteínas Wnt/fisiología , Vía de Señalización Wnt/fisiología , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Biomarcadores/metabolismo , Lesiones Encefálicas/patología , Diferenciación Celular , Neoplasias del Colon/patología , Femenino , Regulación de la Expresión Génica/fisiología , Estudios de Asociación Genética , Humanos , Recién Nacido , Enfermedades del Recién Nacido , Ratones , Ratones Transgénicos , Oligodendroglía/metabolismo , Distribución Aleatoria , Regulación hacia Arriba , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética
19.
Neuron ; 81(3): 574-87, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24507192

RESUMEN

Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders, and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential for regulating interneuron allocation from telencephalic multipotent precursors are poorly understood. Here we report that Olig1 represses production of GABAergic interneurons throughout the mouse brain. Olig1 deletion in mutant mice results in ectopic expression and upregulation of Dlx1/2 genes in the ventral medial ganglionic eminences and adjacent regions of the septum, resulting in an ∼30% increase in adult cortical interneuron numbers. We show that Olig1 directly represses the Dlx1/2 I12b intergenic enhancer and that Dlx1/2 functions genetically downstream of Olig1. These findings establish Olig1 as an essential repressor of Dlx1/2 and interneuron production in developing mammalian brain.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Factores de Transcripción/metabolismo , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Factores de Edad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Recuento de Células , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Sinapsis/fisiología , Factores de Transcripción/genética
20.
Nat Neurosci ; 14(8): 1009-16, 2011 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-21706018

RESUMEN

Permanent damage to white matter tracts, comprising axons and myelinating oligodendrocytes, is an important component of brain injuries of the newborn that cause cerebral palsy and cognitive disabilities, as well as multiple sclerosis in adults. However, regulatory factors relevant in human developmental myelin disorders and in myelin regeneration are unclear. We found that AXIN2 was expressed in immature oligodendrocyte progenitor cells (OLPs) in white matter lesions of human newborns with neonatal hypoxic-ischemic and gliotic brain damage, as well as in active multiple sclerosis lesions in adults. Axin2 is a target of Wnt transcriptional activation that negatively feeds back on the pathway, promoting ß-catenin degradation. We found that Axin2 function was essential for normal kinetics of remyelination. The small molecule inhibitor XAV939, which targets the enzymatic activity of tankyrase, acted to stabilize Axin2 levels in OLPs from brain and spinal cord and accelerated their differentiation and myelination after hypoxic and demyelinating injury. Together, these findings indicate that Axin2 is an essential regulator of remyelination and that it might serve as a pharmacological checkpoint in this process.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/terapia , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de la Mielina/metabolismo , Adulto , Animales , Animales Recién Nacidos , Proteína Axina , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Lesiones Encefálicas/etiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/ultraestructura , Corteza Cerebral/citología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/metabolismo , Proteínas del Citoesqueleto/deficiencia , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/terapia , Recién Nacido , Antígeno Ki-67/metabolismo , Lisofosfatidilcolinas/toxicidad , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Proteínas de la Mielina/genética , Proteínas de la Mielina/uso terapéutico , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Técnicas de Cultivo de Órganos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda