Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Solid State Nucl Magn Reson ; 115: 101751, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34352475

RESUMEN

Phase Change Materials as those of the Ge-Sb-Te ternary system are of great interest for technological applications. Properties of these compounds are strongly related to presence of vacancies and structural investigations remain challenging. In this paper we evidence that 125Te NMR in natural abundance and using commercial systems at intermediate field (14.1 â€‹T) together with NMR parameters prediction can contribute to improve understanding of electronic structure of such systems. GeTe is a typical phase change material, whose structure contains germanium vacancies, even in its stoichiometric form, giving it metallic properties. Here, we use nominal Ge50Te50 and Ge48Te52 crystalline samples as an example to optimize the WURST-CPMG technique, a powerful technique to record wide NMR spectra which has not yet been used on 125Te. The goal was to minimize the time devoted to experiments as well as maximize the signal-to-noise ratio in order to detect small intensity signals directly linked to vacancies. Virtual Crystal Approximation (VCA) calculations performed with WIEN2K helped to interpret the NMR spectra. For Te-based crystalline conducting samples the best experimental results were obtained using 3.2 â€‹mm thin wall rotors with diluted samples 40 â€‹vol% GeTe-60 â€‹vol% SiO2. In addition to the WURST-CPMG technique, high resolution spectra using MAS as implemented in the pj-MAT technique allowed us to identify the distributions of chemical shift parameters in the high intensity contribution of the 1D spectra. The NMR spectra recorded on the samples showed that an addition of Tellurium in the stoichiometric Ge50Te50 sample leads to an important broadening of the spectrum together with a shift of the lines. According to VCA calculations it could be attributed to a distribution of concentrations of germanium vacancies in the sample and it would appear that Knight Shift but also Chemical Shift could contribute in similar proportion to the NMR line position when metavalent bonding is invoked.

2.
RSC Adv ; 9(35): 19882-19894, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35514733

RESUMEN

In this work we provide a detailed study on grafting reactions of various dialkylphosphonate-based ILs. Special attention has been devoted to a comprehensive investigation on how the nature of the anion and the organic spacer composition (hydrophilic or hydrophobic groups) could impact the grafting densities and bonding modes of phosphonate-based ILs anchored to γ-alumina (γ-Al2O3) powders. For the first time, the bonding of phosphonate-based ILs with only surface hexacoordinated aluminum nuclei was established using both solid-state 31P-27Al D-HMQC and 31P NMR experiments. It has been demonstrated that the grafting of dialkylphosphonate-based ILs is competing with a hydrolysis and/or precipitation process which could be attractively hindered by changing the anion nature: bis(trifluoromethane)sulfonylimide anion instead of bromide. In additon, independently of the chosen spacer, similar reaction conditions led to equivalent grafting densities with different bonding mode configurations. The CO2 physisorption analysis on both pure ILs and grafted ILs on alumina powders confirmed that the initial sorption properties of ILs do not change upon grafting, thus confirming the attractive potential of as-grafted ILs for the preparation of hybrid materials in a form of selective adsorbers or membranes for CO2 separation applications.

3.
Chem Commun (Camb) ; 51(45): 9284-6, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25891539

RESUMEN

The long-standing debate about the presence of P-O-B(3) linkages in glasses has been solved by high-field scalar correlation NMR. Previously suggested by dipolar NMR methods, the presence of such species has been definitively demonstrated by (11)B((31)P) J-HMQC NMR techniques. The results indicate that borophosphate networks contain P-O-B(3) bonds and thus present a higher degree of atomic homogeneity than previously thought.

4.
J Phys Chem A ; 111(46): 11873-84, 2007 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17973463

RESUMEN

Based on the analysis of 23 aluminum sites from 16 fluoroaluminates, the present work demonstrates the strong potential of combining accurate NMR quadrupolar parameter measurements, density functional theory (DFT)-based calculations of electric field gradients (EFG), and structure optimizations as implemented in the WIEN2k package for the structural and electronic characterizations of crystalline inorganic materials. Structure optimizations are essential for compounds whose structure was refined from usually less accurate powder diffraction data and provide a reliable assignment of the 27Al quadrupolar parameters to the aluminum sites in the studied compounds. The correlation between experimental and calculated EFG tensor elements leads to the proposition of a new value of the 27Al nuclear quadrupole moment Q(27Al) = 1.616 (+/-0.024) x 10(-29) m2. The DFT calculations provide the orientation of the 27Al EFG tensors in the crystal frame. Electron density maps support that the magnitude and orientation of the 27Al EFG tensors in fluoroaluminates mainly result from the asymmetric distribution of the Al 3p orbital valence electrons. In most cases, the definition of relevant radial and angular distortion indices, relying on EFG orientation, allows correlations between these distortions and magnitude and sign of the Vii.

5.
Inorg Chem ; 45(25): 10215-23, 2006 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-17140229

RESUMEN

27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites.

6.
Inorg Chem ; 43(8): 2474-85, 2004 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-15074964

RESUMEN

High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses.

7.
Solid State Nucl Magn Reson ; 25(4): 241-51, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15028274

RESUMEN

Electric field gradients (EFG) of 23Na and 27Al in three model fluoride crystalline powders AlF3, Na3AlF6 and Na5Al3F14 were computed using the density functional based electronic structure code WIEN97 and compared to values derived from nuclear magnetic resonance (NMR). First, results of measurements of 23Na and 27Al quadrupolar parameters in AlF3, Na3AlF6 and Na5Al3F14 were revisited by using high-resolution solid-state NMR. To determine chemical shifts and quadrupolar parameters with a high precision, the experimental procedure involved magic angle spinning, satellite transition spectroscopy and multi-quanta techniques applied to the quadrupolar nuclei together with a computed reconstruction of the NMR spectra. The large discrepancies which appear between previously published results in some cases, justify the use of ab initio calculations of the corresponding EFG using the WIEN97 code based on the known structural data of the crystalline phases. The agreement obtained between these calculations and the experimental results which is better than 10% in almost all cases supports the reliability of the present NMR investigations and of the crystallographic data.

8.
Solid State Nucl Magn Reson ; 15(2): 79-89, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10670899

RESUMEN

The isotropic chemical shift of 207Pb is used to perform structural investigations of crystalline fluoride compounds (PbF2, Pb2ZnF6, PbGaF5, Pb3Ga2F12 and Pb9Ga2F24) and transition metal fluoride glasses (TMFG) of the PZG family (PbF2-ZnF2-GaF3). Using 207Pb Cross Polarisation Magic Angle Spinning (CP-MAS) NMR with 19F decoupling, it is shown that the isotropic chemical shift of 207Pb varies on a large scale (1000 ppm) and that the main changes of its value are not due to the nearest neighbour fluorines but may be related to the number of next nearest neighbour (nnn) Pb2+ ions. In this way, it is demonstrated that 207Pb chemical shift is an interesting probe to investigate medium range order in either crystalline or glassy fluoride systems. The 207Pb delta(iso) parameter has been linearly correlated to the number of nnn Pb2+ ions.


Asunto(s)
Fluoruros/química , Espectroscopía de Resonancia Magnética/métodos , Flúor , Isótopos , Plomo
9.
Solid State Nucl Magn Reson ; 14(3-4): 181-90, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10499664

RESUMEN

Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2-ZnF2-GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (nu(Q) up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum.


Asunto(s)
Fluoruros/análisis , Galio/análisis , Espectroscopía de Resonancia Magnética , Fenómenos Químicos , Química Física , Cristalización , Modelos Teóricos
10.
Solid State Nucl Magn Reson ; 15(2): 129-38, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10670905

RESUMEN

Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2-ZnF2-GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (nuQ up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum.


Asunto(s)
Fluoruros/química , Galio/química , Espectroscopía de Resonancia Magnética , Fenómenos Químicos , Química Física , Cristalización
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda