Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Infect Dis ; 227(3): 371-380, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36314635

RESUMEN

BACKGROUND: Evaluating the performance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological assays and clearly articulating the utility of selected antigens, isotypes, and thresholds is crucial to understanding the prevalence of infection within selected communities. METHODS: This cross-sectional study, implemented in 2020, screened PCRconfirmed coronavirus disease 2019 patients (n 86), banked prepandemic and negative samples (n 96), healthcare workers and family members (n 552), and university employees (n 327) for antiSARS-CoV-2 receptor-binding domain, trimeric spike protein, and nucleocapsid protein immunoglobulin (Ig)G and IgA antibodies with a laboratory-developed enzyme-linked immunosorbent assay and tested how antigen, isotype and threshold choices affected the seroprevalence outcomes. The following threshold methods were evaluated: (i) mean 3 standard deviations of the negative controls; (ii) 100 specificity for each antigen-isotype combination; and (iii) the maximal Youden index. RESULTS: We found vastly different seroprevalence estimates depending on selected antigens and isotypes and the applied threshold method, ranging from 0.0 to 85.4. Subsequently, we maximized specificity and reported a seroprevalence, based on more than one antigen, ranging from 9.3 to 25.9. CONCLUSIONS: This study revealed the importance of evaluating serosurvey tools for antigen-, isotype-, and threshold-specific sensitivity and specificity, to interpret qualitative serosurvey outcomes reliably and consistently across studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Estudios Seroepidemiológicos , Estudios Transversales , Proteínas de la Nucleocápside , Ensayo de Inmunoadsorción Enzimática/métodos , Sensibilidad y Especificidad , Inmunoglobulina G , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
2.
Exp Cell Res ; 397(2): 112370, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186602

RESUMEN

The mechanical properties of erythrocytes have been investigated by different techniques. However, there are few reports on how the viscoelasticity of these cells varies during malaria disease. Here, we quantitatively map the viscoelastic properties of Plasmodium falciparum-parasitized human erythrocytes. We apply new methodologies based on optical tweezers to measure the viscoelastic properties and defocusing microscopy to measure the erythrocyte height profile, the overall cell volume, and its form factor, a crucial parameter to convert the complex elastic constant into complex shear modulus. The storage and loss shear moduli are obtained for each stage of parasite maturation inside red blood cells, while the former increase, the latter decrease. Employing a soft glassy rheology model, we obtain the power-law exponent for the storage and loss shear moduli, characterizing the soft glassy features of red blood cells in each parasite maturation stage. Ring forms present a liquid-like behavior, with a slightly lower power-law exponent than healthy erythrocytes, whereas trophozoite and schizont stages exhibit increasingly solid-like behaviors. Finally, the surface elastic shear moduli, low-frequency surface viscosities, and shape recovery relaxation times all increase not only in a stage-dependent manner but also when compared to healthy red blood cells. Overall, the results call attention to the soft glassy characteristics of Plasmodium falciparum-parasitized erythrocyte membrane and may provide a basis for future studies to better understand malaria disease from a mechanobiological perspective.


Asunto(s)
Módulo de Elasticidad , Membrana Eritrocítica/patología , Eritrocitos Anormales/patología , Eritrocitos/patología , Malaria/sangre , Plasmodium falciparum/crecimiento & desarrollo , Viscosidad Sanguínea , Membrana Eritrocítica/parasitología , Eritrocitos/parasitología , Eritrocitos Anormales/parasitología , Humanos , Malaria/parasitología , Plasmodium falciparum/patogenicidad , Reología
3.
Bioorg Med Chem Lett ; 26(20): 5007-5008, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27623546

RESUMEN

This article reports the in vitro antiplasmodial activity of two endoperoxides of the class 1,2-dioxetanes against Plasmodium falciparum: bis(adamantyl)-1,2-dioxetane and 3,3,4,4-tetramethyl-1,2-dioxetane. The results reveal that bis(adamantyl)-1,2-dioxetane displays substantial antiplasmodial activity, at least two orders of magnitude higher than that of artemisinin, while 3,3,4,4-tetramethyl-1,2-dioxetane is less active.


Asunto(s)
Antimaláricos/farmacología , Compuestos Heterocíclicos/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Hemólisis/efectos de los fármacos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo
4.
Bioorg Med Chem Lett ; 25(16): 3311-3, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26077496

RESUMEN

To find effective new candidate antimalarial drugs, bradykinin and its analogs were synthesized and tested for effectiveness against Plasmodium gallinaceum sporozoites and Plasmodium falciparum on erythrocytes. Among them, bradykinin and its P2 analog presented high activity against Plasmodium gallinaceum, but they degrade in plasma. On the other hand, RI-BbKI did not degrade and reached high activity. No analog was active against Plasmodium falciparum.


Asunto(s)
Antimaláricos/farmacología , Bradiquinina/farmacología , Péptidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium gallinaceum/efectos de los fármacos , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Bradiquinina/química , Bradiquinina/genética , Humanos , Péptidos/síntesis química , Péptidos/química , Péptidos/genética , Esporozoítos/efectos de los fármacos
5.
Environ Monit Assess ; 186(12): 9051-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25245214

RESUMEN

Grapevines grown on acid soils with low fertility in southern Brazil are treated with intense foliar applications of copper (Cu) fungicides, resulting in an increased level of Cu in the soil and increased toxicity. The present study evaluated the accumulation and bioavailability of Cu, and soils with varying levels of Cu from the main producing regions of southern Brazil were collected. The forms of Cu present in the soil were assessed using chemical extractants; additionally, oat cultivation was performed, reflecting the use of the plant as an indicator of Cu bioavailability. Cu accumulated in the topsoil, mainly in bioavailable forms, and there was also an increase of Cu up to a depth of 0.4 m. Cu was primarily found in the mineral fraction, with apparent saturation of the soil organic matter functional groups. Inceptisol and Alfisol soils with a long history of cupric fungicide application were found to have levels of Cu toxic to oat plants. Furthermore, accumulated copper in Alfisol soil from the Campanha Gaúcha region of the state of Rio Grande do Sul had higher bioavailability compared to Cu accumulated in Inceptisol soil from the Serra Gaúcha region. In addition, the copper concentration in roots was found to serve as an indicator of Cu bioavailability in soil, but not of copper phytotoxicity in plants.


Asunto(s)
Cobre/análisis , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Suelo/química , Avena , Brasil , Contaminación Ambiental , Fungicidas Industriales , Raíces de Plantas/efectos de los fármacos
6.
Brain Res ; 1822: 148669, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951562

RESUMEN

Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.


Asunto(s)
Barrera Hematoencefálica , Bradiquinina , Adhesión Celular , Malaria Cerebral , Malaria Falciparum , Plasmodium falciparum , Humanos , Bradiquinina/metabolismo , Adhesión Celular/fisiología , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Eritrocitos/parasitología , Malaria Cerebral/metabolismo , Malaria Cerebral/parasitología , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Monocitos/fisiología , Plasmodium falciparum/fisiología , Barrera Hematoencefálica/fisiopatología
7.
Sci Rep ; 14(1): 4682, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409185

RESUMEN

Malaria can have severe long-term effects. Even after treatment with antimalarial drugs eliminates the parasite, survivors of cerebral malaria may suffer from irreversible brain damage, leading to cognitive deficits. Angiotensin II, a natural human peptide hormone that regulates blood pressure, has been shown to be active against Plasmodium spp., the etiologic agent of malaria. Here, we tested two Ang II derivatives that do not elicit vasoconstriction in mice: VIPF, a linear tetrapeptide, which constitutes part of the hydrophobic portion of Ang II; and Ang II-SS, a disulfide-bridged derivative. The antiplasmodial potential of both peptides was evaluated with two mouse models: an experimental cerebral malaria model and a mouse model of non-cerebral malaria. The latter consisted of BALB/c mice infected with Plasmodium berghei ANKA. The peptides had no effect on mean blood pressure and significantly reduced parasitemia in both mouse models. Both peptides reduced the SHIRPA score, an assay used to assess murine health and behavior. However, only the constrained derivative (Ang II-SS), which was also resistant to proteolytic degradation, significantly increased mouse survival. Here, we show that synthetic peptides derived from Ang II are capable of conferring protection against severe manifestations of malaria in mouse models while overcoming the vasoconstrictive side effects of the parent peptide.


Asunto(s)
Antimaláricos , Malaria Cerebral , Animales , Ratones , Humanos , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/prevención & control , Malaria Cerebral/parasitología , Angiotensina II/farmacología , Angiotensina II/uso terapéutico , Modelos Animales de Enfermedad , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Péptidos/farmacología , Péptidos/uso terapéutico , Plasmodium berghei/fisiología , Ratones Endogámicos C57BL
8.
Cardiol Young ; 22(3): 263-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22013898

RESUMEN

OBJECTIVE: To present the long-term follow-up of children hospitalised for severe rheumatic carditis who were treated with corticosteroids. METHODS: This is a retrospective analysis of the outcome of 242 patients with severe rheumatic carditis after discharge from two public hospitals in Niteroi, Brazil. We followed up 118 patients for 4 years or more, with an average of 7.7 years. They were treated with antibiotics to accomplish bacterial eradication and either intravenous methylprednisolone - 40 cases - or oral prednisone - 78 patients - to treat carditis. They were followed up in outpatient clinic. RESULTS: Cardiac failure was categorised as classes III and IV according to the New York Heart Association classification. In the intravenous corticosteroid group, 21 cases (52.5%) had isolated mitral valve regurgitation, 12 (30%) had mitral plus aortic involvement, and seven (17.5%) had aortic lesion only. In the oral prednisone group, 45 (58%) had mitral valve regurgitation only, 27 (34%) had mitral plus aortic involvement, and six (8%) had aortic lesion only. A total of 28 children were in their first disease attack, of whom 19 (68%) had a rupture of chordae tendineae. A total of 58 patients (49%) sustained recurrence of carditis because of neglected secondary prophylaxis. In all, 19 cases (16%) underwent cardiac surgery - valve replacement or valvuloplasty. In 33% of the cases, the outcome was favourable - asymptomatic at follow-up. The overall mortality rate was 6.8%. CONCLUSION: Many critically ill patients who complied with secondary prophylaxis were left with minor injuries, whereas those who neglected it or abandoned it had serious sequelae. The rate of abandonment and loss to follow-up was very high. Many cases (49%) were re-hospitalised because of carditis recurrence.


Asunto(s)
Cumplimiento de la Medicación/estadística & datos numéricos , Prednisona/uso terapéutico , Cardiopatía Reumática/tratamiento farmacológico , Adolescente , Brasil , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Masculino , Recurrencia , Estudios Retrospectivos , Cardiopatía Reumática/complicaciones , Cardiopatía Reumática/mortalidad , Tasa de Supervivencia
9.
PLoS One ; 17(5): e0268347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35550638

RESUMEN

1,8-Cineole is a naturally occurring compound found in essential oils of different plants and has well-known anti-inflammatory and antimicrobial activities. In the present work, we aimed to investigate its potential antimalarial effect, using the following experimental models: (1) the erythrocytic cycle of Plasmodium falciparum; (2) an adhesion assay using brain microvascular endothelial cells; and (3) an experimental cerebral malaria animal model induced by Plasmodium berghei ANKA infection in susceptible mice. Using the erythrocytic cycle of Plasmodium falciparum, we characterized the schizonticidal effect of 1,8-cineole. This compound decreased parasitemia in a dose-dependent manner with a half maximal inhibitory concentration of 1045.53 ± 63.30 µM. The inhibitory effect of 972 µM 1,8-cineole was irreversible and independent of parasitemia. Moreover, 1,8-cineole reduced the progression of intracellular development of the parasite over 2 cycles, inducing important morphological changes. Ultrastructure analysis revealed a massive loss of integrity of endomembranes and hemozoin crystals in infected erythrocytes treated with 1,8-cineole. The monoterpene reduced the adhesion index of infected erythrocytes to brain microvascular endothelial cells by 60%. Using the experimental cerebral malaria model, treatment of infected mice for 6 consecutive days with 100 mg/kg/day 1,8-cineole reduced cerebral edema with a 50% reduction in parasitemia. Our data suggest a potential antimalarial effect of 1,8-cineole with an impact on the parasite erythrocytic cycle and severe disease.


Asunto(s)
Antimaláricos , Edema Encefálico , Malaria Cerebral , Animales , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Modelos Animales de Enfermedad , Células Endoteliales , Eucaliptol/farmacología , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/parasitología , Malaria Cerebral/prevención & control , Ratones , Ratones Endogámicos C57BL , Monoterpenos/farmacología , Monoterpenos/uso terapéutico , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium berghei , Plasmodium falciparum
10.
Biochim Biophys Acta Gen Subj ; 1865(3): 129813, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33321150

RESUMEN

BACKGROUND: Malaria is a parasitic disease that compromises the human host. Currently, control of the Plasmodium falciparum burden is centered on artemisinin-based combination therapies. However, decreased sensitivity to artemisinin and derivatives has been reported, therefore it is important to identify new therapeutic strategies. METHOD: We used human erythrocytes infected with P. falciparum and experimental cerebral malaria (ECM) animal model to assess the potential antimalarial effect of eugenol, a component of clove bud essential oil. RESULTS: Plasmodium falciparum cultures treated with increasing concentrations of eugenol reduced parasitemia in a dose-dependent manner, with IC50 of 532.42 ± 29.55 µM. This effect seems to be irreversible and maintained even in the presence of high parasitemia. The prominent effect of eugenol was detected in the evolution from schizont to ring forms, inducing important morphological changes, indicating a disruption in the development of the erythrocytic cycle. Aberrant structural modification was observed by electron microscopy, showing the separation of the two nuclear membrane leaflets as well as other subcellular membranes, such as from the digestive vacuole. Importantly, in vivo studies using ECM revealed a reduction in blood parasitemia and cerebral edema when mice were treated for 6 consecutive days upon infection. CONCLUSIONS: These data suggest a potential effect of eugenol against Plasmodium sp. with an impact on cerebral malaria. GENERAL SIGNIFICANCE: Our results provide a rational basis for the use of eugenol in therapeutic strategies to the treatment of malaria.


Asunto(s)
Antimaláricos/farmacología , Edema Encefálico/tratamiento farmacológico , Eugenol/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Cerebral/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/parasitología , Edema Encefálico/parasitología , Modelos Animales de Enfermedad , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Humanos , Concentración 50 Inhibidora , Estadios del Ciclo de Vida/fisiología , Malaria Cerebral/parasitología , Malaria Falciparum/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad
11.
Phys Rev E ; 101(6-1): 062403, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688571

RESUMEN

The red blood cell membrane-cytoskeleton is a complex structure mainly responsible for giving the cell rigidity and shape. It also provides the erythrocyte with the ability to pass through narrow capillaries of the vertebrate blood circulatory system. Although the red blood cell viscoelastic properties have been extensively studied, reported experimental data differ by up to three orders of magnitude. This could be attributed to the natural cell variability, to the different techniques employed, and also to the models used for the cell response, which are highly dependent on cell geometry. Here, we use two methodologies based on optical tweezers to investigate the viscoelastic behavior of healthy human red blood cells, one applying small cell deformations (microrheology) and another imposing large deformations (tether extraction). We also establish a defocusing microscopy-based method to characterize the cell geometry and thus the erythrocyte form factor, an essential parameter that allows comparisons among the viscoelastic properties at different conditions. Moreover, for small deformations, a soft glassy rheology model is used to discuss the results, while for large deformations two surface shear moduli and one surface viscosity are determined, together with the surface tension and bending modulus of the erythrocyte membrane lipid component. We also show that F-actin is not detected in tethers, although the erythrocyte membrane has physical properties like those of other adherent cells, known to have tethers containing F-actin inside. Altogether, our results show good agreement with the reported literature and we argue that, to properly compare the viscoelastic properties of red blood cells in different situations, the task of cell geometry characterization must be accomplished. This may be especially important when the influence of agents, like the malaria parasite, induces changes in both the geometry and chemical constituents of the erythrocyte membrane. Together, the new methodologies and procedures used in this study would allow the erythrocyte community to better explore the mechanical behavior of red blood cells and may be useful to characterize erythrocyte viscoelasticity changes in several blood diseases.


Asunto(s)
Elasticidad , Eritrocitos/citología , Actinas/metabolismo , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Humanos , Reología , Viscosidad
12.
Water Environ Res ; 91(11): 1490-1497, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31090990

RESUMEN

Azo dyes, common in textile wastewater, have high photolytic and chemical stabilities, which make them difficult to be removed using conventional treatments. This study aims to evaluate a combined process using heterogeneous photocatalysis, with ZnO/UV or TiO2 /UV (0.6 g catalyst L-1 solution/2-hr UV radiation), and a biological process for textile wastewater treatment. After the proposed treatments, the color and organic matter removals from synthetic wastewater (SW) and industrial wastewater (IW) were evaluated. For SW, the coupled photocatalytic (ZnO/UV or TiO2 /UV)-biological system promoted a high extent of color removal (98%) and total organic carbon (TOC) reduction (>80%). Promising results were obtained with IW using combined photocatalytic (TiO2 /UV)-biological treatments, reaching 97% and 63% of color and TOC removal, respectively. This process, coupling heterogeneous photocatalysis and a bioprocess, has proved to be a good alternative for the treatment of textile wastewater, not only for color removal but also for dye mineralization purposes. PRACTITIONER POINTS: A combined process using heterogeneous photocatalysis (ZnO/UV or TiO2 /UV) and biological process was evaluated for synthetic (SW) and industrial (IW) textile wastewaters treatment. For SW, coupled process promoted high extent of colour and organic matter removals. For IW, promising results were obtained with TiO2 /UV-biological treatment (97% of colour and 63% of organic matter removals).


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Catálisis , Colorantes , Industria Textil , Textiles , Titanio , Rayos Ultravioleta
13.
Front Med (Lausanne) ; 6: 75, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058153

RESUMEN

Background: Plasmodium falciparum, the etiologic agent of malaria, is a major cause of infant death in Africa. Although research on the contact system has been revitalized by recent discoveries in the field of thrombosis, limited efforts were done to investigate the role of its proinflammatory arm, the kallikrein kinin system (KKS), in the pathogenesis of neglected parasitic diseases, such as malaria. Owing to the lack of animal models, the dynamics of central nervous system (CNS) pathology caused by the sequestration of erythrocytic stages of P. falciparum is not fully understood. Given the precedent that kinins destabilize the blood brain barrier (BBB) in ischemic stroke, here we sought to determine whether Plasmodium falciparum infected erythrocytes (Pf-iRBC) conditioned medium enhances parasite sequestration and impairs BBB integrity via activation of the kallikrein kinin system (KKS). Methods: Monolayers of human brain endothelial cell line (BMECs) are preincubated with the conditioned medium from Pf-iRBCs or RBCs (controls) in the presence or absence of HOE-140 or DALBK, antagonists of bradykinin receptor B2 (B2R) and bradykinin receptor B1 (B1R), respectively. Following washing, the treated monolayers are incubated with erythrocytes, infected or not with P. falciparum mature forms, to examine whether the above treatment (i) has impact on the adhesion of Pf-iRBC to BMEC monolayer, (ii) increases the macromolecular permeability of the tracer BSA-FITC, and (iii) modifies the staining pattern of junctional proteins (ZO-1 and ß-catenin). Results: We found that kinins generated in the parasite conditioned medium, acting via bradykinin B2 and/or B1 receptors (i) enhanced Pf-iRBC adhesion to the endothelium monolayer and (ii) impaired the endothelial junctions formed by ZO-1 and ß-catenin, consequently disrupting the integrity of the BBB. Conclusions: Our studies raise the possibility that therapeutic targeting of kinin forming enzymes and/or endothelial bradykinin receptors might reduce extent of Pf-iRBC sequestration and help to preserve BBB integrity in cerebral malaria (CM).

14.
PLoS One ; 14(4): e0215871, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31002704

RESUMEN

Tubule-interstitial injury (TII) is a critical step in the progression of renal disease. It has been proposed that changes in proximal tubule (PT) albumin endocytosis plays an important role in the development of TII. Some reports have shown protective effects of lithium on kidney injury animal models that was correlated to proteinuria. We tested the hypothesis that lithium treatment ameliorates the development of TII due to changes in albumin endocytosis. Two experimental models were used: (1) TII induced by albumin overload in an animal model; (2) LLC-PK1 cells, a PT cell line. Lithium treatment ameliorates TII induced by albumin overload measured by (1) proteinuria; (2) collagen deposition; (3) area of tubule-interstitial space, and (4) macrophage infiltration. Lithium treatment increased mTORC2 activity leading to the phosphorylation of protein kinase B (PKB) at Ser473 and its activation. This mechanism enhanced albumin endocytosis in PT cells, which decreased the proteinuria observed in TII induced by albumin overload. This effect did not involve changes in the expression of megalin, a PT albumin receptor. In addition, activation of this pathway decreased apoptosis in LLC-PK1 cells, a PT cell line, induced by higher albumin concentration, similar to that found in pathophysiologic conditions. Our results indicate that the protective role of lithium treatment on TII induced by albumin overload involves an increase in PT albumin endocytosis due to activation of the mTORC2/PKB pathway. These results open new possibilities in understanding the effects of lithium on the progression of renal disease.


Asunto(s)
Túbulos Renales Proximales/efectos de los fármacos , Carbonato de Litio/farmacología , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Sustancias Protectoras/farmacología , Proteinuria/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Albúminas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica , Humanos , Túbulos Renales Proximales/lesiones , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/agonistas , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteinuria/metabolismo , Proteinuria/fisiopatología , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Microbes Infect ; 20(3): 205-211, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29253662

RESUMEN

Purine nucleotide synthesis in protozoa takes place exclusively via the purine salvage pathway and S-adenosyl-l-homocysteine hydrolase (SAHH) is an important enzyme in the Plasmodium salvage pathway which is not present in erythrocytes. Here, we describe the antimalarial effect of 2'3'-dialdehyde adenosine or oxidized adenosine (oADO), inhibitor of SAHH, on in vitro infection of human erythrocytes by P. falciparum. Treatment of infected erythrocytes with oADO inhibits parasite development and reinvasion of new cells. Erythrocytes pre-treated with oADO have a reduced susceptibility to invasion. Our results suggest that oADO interferes with one or more parasitic enzymes of the purine salvage pathway.


Asunto(s)
Adenosina/análogos & derivados , Antimaláricos/farmacología , Eritrocitos/parasitología , Plasmodium falciparum/efectos de los fármacos , Adenosina/metabolismo , Adenosina/farmacología , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo
16.
Plant Physiol Biochem ; 126: 152-162, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29524802

RESUMEN

Soil contamination with copper (Cu)-based agrochemicals used in vineyards for pest control is a growing problem. In this context, the application of soil amendment to limit Cu toxicity, especially for young plants after the replanting of vineyards, has been a concern for winemakers. Therefore, the aim of this study was to evaluate how different amendments can contribute to the decrease in Cu availability in areas vocated to viticulture. Furthermore, the aim was to evaluate to the effect of Cu on the biochemical and physiological changes in the development of the young vine plants, both at the shoot and the root level. Vine plants were grown in a greenhouse using a Typic Hapludalf soil characterized by 87.5 mg of Cu kg-1 (control). Three different amendments were applied to the soil: limestone (3 Mg ha-1), calcium silicate (3 Mg ha-1) and vermicompost (30 g of C kg-1). The amendment with vermicompost and calcium silicate caused a significant alkalization of the soil solution. Moreover, specifically for the treatment with vermicompost, the levels of Cu2+ in the soil solution were consistently diminished with a clear benefit for plants (+89% biomass accumulation at the shoot level). In addition, this soil amendment led to a higher photosynthetic rate, lower superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (POD, EC 1.11.1.7) activity and a higher percentage of fine roots with diameter between 0 < L ≥ 0.2 mm (particularly active in water and nutrient acquisition). In conclusion, results showed that vermicompost effectively reduced Cu phytotoxicityin young vines grown in soils with high Cu contents. Furthermore, this amendment might be an asset in enhancing the availability of other important micronutrients such as iron.


Asunto(s)
Compuestos de Calcio/farmacología , Cobre , Granjas , Silicatos/farmacología , Suelo , Vitis/crecimiento & desarrollo
17.
Front Mol Biosci ; 5: 67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073169

RESUMEN

Monocyte adhesion is a crucial step in transmigration and can be induced by lipopolysaccharide (LPS). Here, we studied the role of mammalian target of rapamycin (mTOR) complexes, mTORC1 and mTORC2, and PKC in this process. We used THP-1 cells, a human monocytic cell line, to investigate monocyte adhesion under static and flow conditions. We observed that 1.0 µg/mL LPS increased PI3K/mTORC2 pathway and PKC activity after 1 h of incubation. WYE-354 10-6 M (mTORC2/mTORC1 inhibitor) and 10-6 M wortmannin avoided monocyte adhesion in culture plates. In addition, WYE also blocked LPS-induced CD11a expression. Interestingly, rapamycin and WYE-354 blocked both LPS-induced monocyte adhesion in a cell monolayer and actin cytoskeleton rearrangement, confirming mTORC1 involvement in this process. Once activated, PKC activates mTORC1/S6K pathway in a similar effect observed to LPS. Activation of the mTORC1/S6K pathway was attenuated by 10-6 M U0126, an MEK/ERK inhibitor, and 10-6 M calphostin C, a PKC inhibitor, indicating that the MEK/ERK/TSC2 axis acts as a mediator. In agreement, 80 nM PMA (a PKC activator) mimicked the effect of LPS on the activation of the MEK/ERK/TSC2/mTORC1/S6K pathway, monocyte adhesion to ECV cells and actin cytoskeleton rearrangement. Our findings show that LPS induces activation of mTOR complexes. This signaling pathway led to integrin expression and cytoskeleton rearrangement resulting in monocyte adhesion. These results describe a new molecular mechanism involved in monocyte adhesion in immune-based diseases.

18.
PLoS One ; 13(9): e0203836, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30204779

RESUMEN

Malaria-induced acute kidney injury (MAKI) is a life-threatening complication of severe malaria. Here, we investigated the potential role of the angiotensin II (Ang II)/AT1 receptor pathway in the development of MAKI. We used C57BL/6 mice infected by Plasmodium berghei ANKA (PbA-infected mice), a well-known murine model of severe malaria. The animals were treated with 20 mg/kg/day losartan, an antagonist of AT1 receptor, or captopril, an angiotensin-converting enzyme inhibitor. We observed an increase in the levels of plasma creatinine and blood urea nitrogen associated with a significant decrease in creatinine clearance, a marker of glomerular flow rate, and glomerular hypercellularity, indicating glomerular injury. PbA-infected mice also presented proteinuria and a high level of urinary γ-glutamyltransferase activity associated with an increase in collagen deposition and interstitial space, showing tubule-interstitial injury. PbA-infected mice were also found to have increased fractional excretion of sodium (FENa+) coupled with decreased cortical (Na++K+)ATPase activity. These injuries were associated with an increase in pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6, interleukin-17, and interferon gamma, in the renal cortex of PbA-infected mice. All modifications of these structural, biochemical, and functional parameters observed in PbA-infected mice were avoided with simultaneous treatment with losartan or captopril. Our data allow us to postulate that the Ang II/AT1 receptor pathway mediates an increase in renal pro-inflammatory cytokines, which in turn leads to the glomerular and tubular injuries observed in MAKI.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Angiotensina II/metabolismo , Malaria/complicaciones , Malaria/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Lesión Renal Aguda/patología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Captopril/farmacología , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Losartán/farmacología , Malaria/patología , Masculino , Ratones Endogámicos C57BL , Plasmodium berghei , Distribución Aleatoria
19.
Artículo en Inglés | MEDLINE | ID: mdl-26779452

RESUMEN

Malaria is a worldwide health problem leading the death of millions of people. The disease is induced by different species of protozoa parasites from the genus Plasmodium. In humans, Plasmodium falciparum is the most dangerous species responsible for severe disease. Despite all efforts to establish the pathogenesis of malaria, it is far from being fully understood. In addition, resistance to existing drugs has developed in several strains and the development of new effective compounds to fight these parasites is a major issue. Recent discoveries indicate the potential role of the renin-angiotensin system (RAS) in malaria infection. Angiotensin receptors have not been described in the parasite genome, however several reports in the literature suggest a direct effect of angiotensin-derived peptides on different aspects of the host-parasite interaction. The aim of this review is to highlight new findings on the involvement of the RAS in parasite development and in the regulation of the host immune response in an attempt to expand our knowledge of the pathogenesis of this disease.


Asunto(s)
Interacciones Huésped-Parásitos , Malaria Falciparum/patología , Malaria Falciparum/fisiopatología , Sistema Renina-Angiotensina , Humanos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/inmunología
20.
Chem Biol Drug Des ; 86(6): 1373-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26032859

RESUMEN

The antimalarial activity of peroxides most likely originates from their interaction with iron(II) species located inside the malaria parasite, which forms destructive radical species through a Fenton-like mechanism. This article reports the first evaluation of the in vitro antimalarial activity of three peroxides of the class 1,2-dioxetanes against Plasmodium falciparum; the results reveal that the studied 3-methoxy-1,2-dioxetanes display significant antimalarial activity, at a similar level as artemisinin and also that their reactivity toward iron(II) correlate linearly with their antimalarial activity.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Peróxidos/química , Peróxidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Artemisininas/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Hemólisis/efectos de los fármacos , Humanos , Técnicas In Vitro , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda