Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Planta Med ; 87(1-02): 187-195, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32645738

RESUMEN

Fungi are a rich source of bioactive compounds. Fungal cocultivation is a method of potentiating chemical interactions and, consequently, increasing bioactive molecule production. In this study, we evaluated the bactericidal, antiprotozoal, and cathepsin V inhibition activities of extracts from axenic cultures of 6 fungi (Fusarium guttiforme, Pestalotiopsis diospyri, Phoma caricae-papayae, Colletotrichum horii, Phytophthora palmivora, and C. gloeosporioides) that infest tropical fruits and 57 extracts obtained by their cocultivation. Our results reveal that fungal cocultivation enhances the biological activity of the samples, since all extracts that were active on Gram-positive bacteria, Gram-negative bacteria, Trypanosoma cruzi, and Leishmania infantum were obtained from cocultivation. Bacterial growth is either totally or partially inhibited by 46% of the extracts. Two extracts containing mainly fusaric and 9,10-dehydrofusaric acids were particularly active. The presence of the fungus F. guttiforme in co-cultures that give rise to extracts with the highest activities against L. infantum. An axenic culture gave rise to the most active extract for the inhibition of cathepsin V; however, other coculture extracts also exhibited activity toward this biological target. Therefore, the results of the biological activities indicate that fungal cocultivation increased the biological potential of samples, likely due to the hostile and competitive environment that pushes microorganisms to produce substances important for defense and allows access to metabolic routes then silenced in milder cultivation conditions.


Asunto(s)
Antiprotozoarios , Fusarium , Antiprotozoarios/farmacología , Técnicas de Cocultivo , Colletotrichum , Hongos
2.
Braz J Microbiol ; 51(3): 1169-1175, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32189177

RESUMEN

Papain-like cysteine proteases (PLCPs) in plants are essential to prevent phytopathogen invasion. In order to search for cysteine protease inhibitors and to investigate compounds that could be associated to pineapple Fusarium disease, a chemistry investigation was performed on Fusarium proliferatum isolated from Ananas comosus (pineapple) and cultivated in Czapek medium. From F. proliferatum extracts, nine secondary metabolites were isolated and characterized by nuclear magnetic resonance spectroscopy and mass spectrometry experiments: beauvericin (1), fusaric acid (2), N-ethyl-3-phenylacetamide (3), N-acetyltryptamine (4), cyclo(L-Val-L-Pro) cyclodipeptide (5), cyclo(L-Leu-L-Pro) cyclodipeptide (6), cyclo(L-Leu-L-Pro) diketopiperazine (7), 2,4-dihydroxypyrimidine (8), and 1H-indole-3-carbaldehyde (9). Compounds 1, 3, and 6 showed significant inhibition of papain, with IC50 values of 25.3 ± 1.9, 39.4 ± 2.5, and 7.4 ± 0.5 µM, respectively. Compound 1 also showed significant inhibition against human cathepsins V and B with IC50 of 46.0 ± 3.0 and 6.8 ± 0.7 µM, respectively. The inhibition of papain by mycotoxins (fusaric acid and beauvericin) may indicate a mechanism of Fusarium in the roles of infection process.


Asunto(s)
Ananas/enzimología , Proteasas de Cisteína/química , Inhibidores de Cisteína Proteinasa/química , Fusarium/química , Micotoxinas/química , Proteínas de Plantas/química , Ananas/química , Ananas/microbiología , Inhibidores de Cisteína Proteinasa/metabolismo , Fusarium/metabolismo , Cinética , Espectrometría de Masas , Micotoxinas/metabolismo , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda