Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Inorg Chem ; 63(24): 11063-11078, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38814816

RESUMEN

In this paper, we employed a multidisciplinary approach, combining experimental techniques and density functional theory (DFT) calculations to elucidate key features of the copper coordination environment of the bacterial lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens (SmAA10). The structure of the holo-enzyme was successfully obtained by X-ray crystallography. We then determined the copper(II) binding affinity using competing ligands and observed that the affinity of the histidine brace ligands for copper is significantly higher than previously described. UV-vis, advanced electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS) techniques, including high-energy resolution fluorescence detected (HERFD) XAS, were further used to gain insight into the copper environment in both the Cu(II) and Cu(I) redox states. The experimental data were successfully rationalized by DFT models, offering valuable information on the electronic structure and coordination geometry of the copper center. Finally, the Cu(II)/Cu(I) redox potential was determined using two different methods at ca. 350 mV vs NHE and rationalized by DFT calculations. This integrated approach not only advances our knowledge of the active site properties of SmAA10 but also establishes a robust framework for future studies of similar enzymatic systems.


Asunto(s)
Dominio Catalítico , Cobre , Teoría Funcional de la Densidad , Oxigenasas de Función Mixta , Serratia marcescens , Cobre/química , Cobre/metabolismo , Serratia marcescens/enzimología , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Cristalografía por Rayos X , Modelos Moleculares , Polisacáridos/química , Polisacáridos/metabolismo , Oxidación-Reducción
2.
Chemistry ; 28(66): e202202206, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36044615

RESUMEN

The stereoselective copper-mediated hydroxylation of intramolecular C-H bonds from tridentate ligands is reinvestigated using DFT calculations. The computational study aims at deciphering the mechanism of C-H hydroxylation obtained after reaction of Cu(I) precursors with dioxygen, using ligands bearing either activated (L1 ) or non-activated (L2 ) C-H bonds. Configurational analysis allows rationalization of the experimentally observed regio- and stereoselectivity. The computed mechanism involves the formation of a side-on peroxide species (P) in equilibrium with the key intermediate bis-(µ-oxo) isomer (O) responsible for the C-H activation step. The P/O equilibrium yields the same activation barrier for the two complexes. However, the main difference between the two model complexes is observed during the C-H activation step, where the complex bearing the non-activated C-H bonds yields a higher energy barrier, accounting for the experimental lack of reactivity of this complex under those conditions.


Asunto(s)
Cobre , Oxígeno , Cobre/química , Ligandos , Oxígeno/química , Peróxidos/química
3.
Analyst ; 147(11): 2515-2522, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35543191

RESUMEN

1D 1H NMR spectroscopy has been widely used to monitor enzymatic activity by recording the evolution of the spectra of substrates and/or products, thanks to the linear response of NMR. For complex systems involving the coexistence of multiple compounds (substrate, final product and various intermediates), the identification and quantification can be a more arduous task. Here, we present a simple analytical method for the rapid characterization of reaction mixtures involving enzymatic complexes using Maximum Quantum (MaxQ) NMR, accelerated with the Non-Uniform Sampling (NUS) acquisition procedure. Specifically, this approach enables, in the first analytical step, the counting of the molecules present in the samples. We also show, using two different enzymatic systems, that the implementation of these pulse sequences implies precautions related to the short relaxation times due to the presence of metallo-enzymes or paramagnetic catalysts. Finally, the combination of MaxQ and diffusion experiments, which leads to a 3D chart, greatly improves the resolution and offers an extreme simplification of the spectra while giving valuable indications on the affinity of the enzymes to the different compounds present in the reaction mixture.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos
4.
Inorg Chem ; 61(20): 8022-8035, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35549254

RESUMEN

Understanding the structure and function of lytic polysaccharide monooxygenases (LPMOs), copper enzymes that degrade recalcitrant polysaccharides, requires the reliable atomistic interpretation of electron paramagnetic resonance (EPR) data on the Cu(II) active site. Among various LPMO families, the chitin-active PlAA10 shows an intriguing phenomenology with distinct EPR signals, a major rhombic and a minor axial signal. Here, we combine experimental and computational investigations to uncover the structural identity of these signals. X-band EPR spectra recorded at different pH values demonstrate pH-dependent population inversion: the major rhombic signal at pH 6.5 becomes minor at pH 8.5, where the axial signal dominates. This suggests that a protonation change is involved in the interconversion. Precise structural interpretations are pursued with quantum chemical calculations. Given that accurate calculations of Cu g-tensors remain challenging for quantum chemistry, we first address this problem via a thorough calibration study. This enables us to define a density functional that achieves accurate and reliable prediction of g-tensors, giving confidence in our evaluation of PlAA10 LPMO models. Large models were considered that include all parts of the protein matrix surrounding the Cu site, along with the characteristic second-sphere features of PlAA10. The results uniquely identify the rhombic signal with a five-coordinate Cu ion bearing two water molecules in addition to three N-donor ligands. The axial signal is attributed to a four-coordinate Cu ion where only one of the waters remains bound, as hydroxy. Alternatives that involve decoordination of the histidine brace amino group are unlikely based on energetics and spectroscopy. These results provide a reliable spectroscopy-consistent view on the plasticity of the resting state in PlAA10 LPMO as a foundation for further elucidating structure-property relationships and the formation of catalytically competent species. Our strategy is generally applicable to the study of EPR parameters of mononuclear copper-containing metalloenzymes.


Asunto(s)
Oxigenasas de Función Mixta , Photorhabdus , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Oxigenasas de Función Mixta/química , Photorhabdus/enzimología , Polisacáridos/química
5.
Chembiochem ; 22(3): 443-459, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32852088

RESUMEN

The Diels-Alder (DA) reaction is a cycloaddition of a conjugated diene and an alkene (dienophile) leading to the formation of a cyclohexene derivative through a concerted mechanism. As DA reactions generally proceed with a high degree of regio- and stereoselectivity, they are widely used in synthetic organic chemistry. Considering eco-conscious public and governmental movements, efforts are now directed towards the development of synthetic processes that meet environmental concerns. Artificial enzymes, which can be developed to catalyze abiotic reactions, appear to be important synthetic tools in the synthetic biology field. This review describes the different strategies used to develop protein-based artificial enzymes for DA reactions, including for in cellulo approaches.


Asunto(s)
Ciclohexenos/síntesis química , Albúmina Sérica/química , Animales , Reacción de Cicloadición , Ciclohexenos/química , Humanos , Modelos Moleculares , Estructura Molecular , Porcinos
6.
Inorg Chem ; 60(5): 2939-2952, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33596377

RESUMEN

Three novel dinuclear Cu(II) complexes based on a N,N,O-chelating salphen-like ligand scaffold and bearing varying aromatic substituents (-H, -Cl, and -Br) have been synthesized and characterized. The experimental and computational data obtained suggest that all three complexes exist in the dimeric form in the solid state and adopt the same conformation. The mass spectrometry and electron paramagnetic resonance results indicate that the dimeric structure coexists with the monomeric form in solution upon solvent (dimethyl sulfoxide and water) coordination. The three synthesized Cu(II) complexes exhibit high potentiality as ROS generators, with the Cu(II)/Cu(I) redox potential inside the biological redox window, and thus being able to biologically undergo Cu(II)/Cu(I) redox cycling. The formation of ROS is one of the most promising reported cell death mechanisms for metal complexes to offer an inherent selectivity to cancer cells. In vitro cytotoxic studies in two different cancer cell lines (HeLa and MCF7) and in a normal fibroblast cell line show promising selective cytotoxicity for cancer cells (IC50 about 25 µM in HeLa cells, which is in the range of cisplatin and improved with respect to carboplatin), hence placing this N,N,O-chelating salphen-like metallic core as a promising scaffold to be explored in the design of future tailor-made Cu(II) cytotoxic compounds.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Bases de Schiff/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quelantes/síntesis química , Quelantes/farmacología , Quelantes/toxicidad , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Cobre/química , ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Teoría Funcional de la Densidad , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Ratones , Modelos Químicos , Células 3T3 NIH , Especies Reactivas de Oxígeno/metabolismo , Bases de Schiff/síntesis química , Bases de Schiff/toxicidad
7.
Chemistry ; 25(60): 13766-13776, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31424584

RESUMEN

1-Aminocyclopropane-1-carboxylic oxidase (ACCO) is a non-heme iron(II)-containing enzyme involved in the biosynthesis of the phytohormone ethylene, which regulates fruit ripening and flowering in plants. The active conformation of ACCO, and in particular that of the C-terminal part, remains unclear and open and closed conformations have been proposed. In this work, a combined experimental and computational study to understand the conformation and dynamics of the C-terminal part is reported. Site-directed spin-labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy was used. Mutagenesis experiments were performed to generate active enzymes bearing two paramagnetic labels (nitroxide radicals) anchored on cysteine residues, one in the main core and one in the C-terminal part. Inter-spin distance distributions were measured by pulsed EPR spectroscopy and compared with the results of molecular dynamics simulations. The results reveal the existence of a flexibility of the C-terminal part. This flexibility generates several conformations of the C-terminal part of ACCO that correspond neither to the existing crystal structures nor to the modelled structures. This highly dynamic region of ACCO raises questions on its exact function during enzymatic activity.

8.
Angew Chem Int Ed Engl ; 58(41): 14605-14609, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31487113

RESUMEN

In the context of developing ecofriendly chemistry, artificial enzymes are now considered as promising tools for synthesis. They are prepared in particular with the aim to catalyze reactions that are rarely, if ever, catalyzed by natural enzymes. We discovered that 1-aminocyclopropane carboxylic acid oxidase reconstituted with CuII served as an efficient artificial Diels-Alderase. The kinetic parameters of the catalysis of the cycloaddition of cyclopentadiene and 2-azachalcone were determined (KM =230 µm, kapp =3 h-1 ), which gave access to reaction conditions that provided quantitative yield and >99 % ee of the (1S,2R,3R,4R) product isomer. This unprecedented performance was rationalized by molecular modeling as only one docking pose of 2-azachalcone was possible in the active site of the enzyme and this was the one that leads to the (1S,2R,3R,4R) product isomer.


Asunto(s)
Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Cobre/química , Dominio Catalítico , Tecnología Química Verde , Modelos Moleculares , Conformación Proteica
9.
Chemistry ; 24(20): 5213-5224, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29406617

RESUMEN

Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf)2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(µ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction.

10.
Arch Biochem Biophys ; 623-624: 31-41, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28522117

RESUMEN

1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II). Continuous wave (cw) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopies as well as Density Functional Theory (DFT) calculations were performed and models for the copper(II) binding sites were deduced. In all investigated enzymes, the copper ion is equatorially coordinated by the two histidine residues (H177 and H234) and probably two water molecules. The copper-containing enzymes are inactive, even when hydrogen peroxide is used in peroxide shunt approach. EPR experiments and DFT calculations were undertaken to investigate substrate's (ACC) binding on the copper ion and the results were used to rationalize the lack of copper-mediated activity.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Cobre/metabolismo , Petunia/enzimología , Aminoácido Oxidorreductasas/química , Sitios de Unión , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Petunia/química , Petunia/metabolismo , Conformación Proteica , Especificidad por Sustrato
11.
Inorg Chem ; 56(3): 1023-1026, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28060494

RESUMEN

We report here two copper complexes as first functional models for lytic polysaccharide monooxygenases, mononuclear copper-containing enzymes involved in recalcitrant polysaccharide breakdown. These complexes feature structural and spectroscopic properties similar to those of the enzyme. In addition, they catalyze oxidative cleavage of the model substrate p-nitrophenyl-ß-d-glucopyranoside. More importantly, a particularly stable copper(II) hydroperoxide intermediate is detected in the reaction conditions.


Asunto(s)
Cobre/química , Oxigenasas de Función Mixta/química , Compuestos Organometálicos/química , Polisacáridos/química , Biocatálisis , Cobre/metabolismo , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/metabolismo , Polisacáridos/metabolismo , Teoría Cuántica , Thermoascus/enzimología
12.
Inorg Chem ; 55(20): 10090-10093, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27690396

RESUMEN

The chiral pentadentate low-spin (S = 1) oxoiron(IV) complex [FeIV(O)(asN4Py)]2+ (2) was synthesized and spectroscopically characterized. Its formation kinetics, reactivity, and (enantio)selectivity in an oxygen-atom-transfer reaction was investigated in detail and compared to a similar pentadentate ligand-containing system.

13.
Angew Chem Int Ed Engl ; 54(42): 12325-8, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26190407

RESUMEN

The hitherto most realistic low-molecular-weight analogue for the 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) is reported. The ACCOs 2-His-1-carboxylate iron(II) active site was mimicked by a TpFe moiety, to which the natural substrate ACC could be bound. The resulting complex [Tp(Me,Ph) FeACC] (1), according to X-ray diffraction analysis performed for the nickel analogue, represents an excellent structural model, featuring ACC coordinated in a bidentate fashion-as proposed for the enzymatic substrate complex-as well as a vacant coordination site that forms the basis for the first successful replication also of the ACCO function: 1 is the first known ACC complex that reacts with O2 to produce ethylene. As a FeOOH species had been suggested as intermediate in the catalytic cycle, H2 O2 was tested as the oxidant, too, and indeed evolution of ethylene proceeded even more rapidly to give 65 % yield.


Asunto(s)
Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Etilenos/biosíntesis , Etilenos/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Modelos Moleculares , Estructura Molecular , Oxígeno/química , Oxígeno/metabolismo , Difracción de Rayos X
14.
J Inorg Biochem ; 260: 112688, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39111220

RESUMEN

New-to-Nature biocatalysis has emerged as a promising tool in organic synthesis thanks to progress in protein engineering. Notably, hemeproteins have been evolved into robust catalysts for carbene and nitrene transfers and related sigmatropic rearrangements. In this work, we report the first example of a [2,3]-sigmatropic Sommelet-Hauser rearrangement initiated by a carbene transfer of the sperm whale myoglobin mutant L29S,H64V,V68F that was previously reported to catalyze the mechanistically similar [2,3]-sigmatropic Doyle-Kirmse rearrangement. This repurposed heme enzyme catalyzes the Sommelet-Hauser rearrangement between ethyl diazoacetate and benzyl thioethers bearing strong electron-withdrawing substituents with good yields and enantiomeric excess. Optimized catalytic conditions in the absence of any reductant led to an increased asymmetric induction with up to 59% enantiomeric excess. This myoglobin mutant is therefore one of the few catalysts for the asymmetric Sommelet-Hauser rearrangement. This work broadens the scope of abiological reactions catalyzed by iron-carbene transferases with a new example of asymmetric sigmatropic rearrangement.


Asunto(s)
Mioglobina , Mioglobina/química , Mioglobina/genética , Mioglobina/metabolismo , Metano/análogos & derivados , Metano/química , Metano/metabolismo , Biocatálisis , Transferasas/metabolismo , Transferasas/genética , Transferasas/química , Animales , Cachalote , Ingeniería de Proteínas/métodos
15.
Chem Sci ; 15(27): 10308-10349, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38994420

RESUMEN

This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).

16.
JACS Au ; 4(5): 1966-1974, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818064

RESUMEN

Using light to unveil unexplored reactivities of earth-abundant metal-oxygen intermediates is a formidable challenge, given the already remarkable oxidation ability of these species in the ground state. However, the light-induced reactivity of Cu-O2 intermediates still remains unexplored, due to the photoejection of O2 under irradiation. Herein, we describe a photoinduced reactivity switch of bioinspired O2-activating CuI complexes, based on the archetypal tris(2-pyridyl-methyl)amine (TPA) ligand. This report represents a key precedent for light-induced reactivity switch in Cu-O2 chemistry, obtained by positioning C-H substrates in close proximity of the active site. Open and caged CuI complexes displaying an internal aryl ether substrate were evaluated. Under light, a Cu-O2 mediated reaction takes place that induces a selective conversion of the internal aryl ether unit to a phenolate-CH2- moiety with excellent yields. This light-induced transformation displays high selectivity and allows easy postfunctionalization of TPA-based ligands for straightforward preparation of challenging heteroleptic structures. In the absence of light, O2 activation results in the standard oxidative cleavage of the covalently attached substrate. A reaction mechanism that supports a monomeric cupric-superoxide-dependent reactivity promoted by light is proposed on the basis of reactivity studies combined with (TD-) DFT calculations.

17.
J Am Chem Soc ; 135(8): 3095-103, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23330664

RESUMEN

Several recent studies have shown that the combination of photosensitizers with metalloenzymes can support a light-driven multielectron reduction of molecules such as CO(2) or HCN. Here we show that the association of the zinc tetramethylpyridinium porphyrin (ZnTMPyP(4+)) photosensitizer with the multicopper oxidase (MCO) laccase allows to link the oxidation of an organic molecule to the four electrons reduction of dioxygen into water. The enzyme is photoreduced within minutes with porphyrin/enzyme ratio as low as 1:40. With a 1:1 ratio, the dioxygen consumption rate is 1.7 µmol L(-1) s(-1). Flash photolysis experiments support the formation of the triplet excited state of ZnTMPyP(4+) which reduces the enzyme to form a radical cation of the porphyrin with a k(ET) ≈ 10(7) s(-1) M(-1). The long-lived triplet excited state of the ZnTMPyP(4+) (τ(0) = 0.72 ms) accounts for a substantial electron-transfer quantum yield, φ(ET) = 0.35. Consequently, the enzyme-dependent photo-oxidation of the electron donor occurs with a turnover of 8 min(-1) for the one-electron oxidation process, thereby supporting the suitability of such enzyme/sensitizer hybrid systems for aerobic photodriven transformations on substrates. This study is the first example of a phorphyrin-sensitized four-electron reduction of an enzyme of the MCO family, leading to photoreduction of dioxygen into water.


Asunto(s)
Lacasa/química , Luz , Oxígeno/química , Porfirinas/química
18.
Inorg Chem ; 52(10): 5824-30, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23641964

RESUMEN

A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by µ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(µ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.


Asunto(s)
Cobre/química , Compuestos Organometálicos/química , Cationes/síntesis química , Cationes/química , Campos Magnéticos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Teoría Cuántica , Temperatura
19.
Chem Commun (Camb) ; 59(29): 4288-4299, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946593

RESUMEN

Reproducing the key features offered by metalloprotein binding cavities is an attractive approach to overcome the main bottlenecks of current open artificial models (in terms of stability, efficiency and selectivity). In this context, this featured article brings together selected examples of recent developments in the field of confined bioinspired complexes with an emphasis on the emerging hemicryptophane caged ligands. In particular, we focused on (1) the strategies allowing the insulation and protection of complexes sharing similarities with metalloprotein active sites, (2) the confinement-induced improvement of catalytic efficiencies and selectivities and (3) very recent efforts that have been made toward the development of bioinspired complexes equipped with weakly binding artificial cavities.

20.
Chempluschem ; 88(5): e202300156, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37145031

RESUMEN

This study investigates the site-directed immobilization of a hybrid catalyst bearing a biquinoline-based-Pd(II) complex (1) and a robust laccase within cavities of a silica foam to favor veratryl alcohol oxidation. We performed the grafting of 1 at a unique surface located lysine of two laccase variants, either at closed (1⊂UNIK157 ) or opposite position (1⊂UNIK71 ) of the enzyme oxidation site. After immobilization into the cavities of silica monoliths bearing hierarchical porosity, we show that catalytic activity is dependent on the orientation and loading of each hybrid, 1⊂UNIK157 being twice as active than 1⊂UNIK71 (203 TON vs 100 TON) when operating under continuous flow. These systems can be reused 5 times, with an operational activity remaining as high as 40 %. We show that the synergy between 1 and laccase can be tuned within the foam. This work is a proof of concept for controlling the organization of a heterogeneous hybrid catalyst using a Pd/laccase/silica foam.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda