Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
EMBO J ; 41(24): e112920, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36398765

RESUMEN

Mitochondria are key signaling hubs for innate immune responses. In this issue, Wu et al (2022) report that remodeling of the outer mitochondrial membrane by the linear ubiquiting chain assembly complex (LUBAC) facilitates transport of activated NF-κB to the nucleus in response to TNF signaling.


Asunto(s)
FN-kappa B , Ubiquitina-Proteína Ligasas , FN-kappa B/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Transducción de Señal , Mitocondrias/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(32): e2303402120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523531

RESUMEN

The endoplasmic reticulum (ER) and mitochondria form a unique subcellular compartment called mitochondria-associated ER membranes (MAMs). Disruption of MAMs impairs Ca2+ homeostasis, triggering pleiotropic effects in the neuronal system. Genome-wide kinase-MAM interactome screening identifies casein kinase 2 alpha 1 (CK2A1) as a regulator of composition and Ca2+ transport of MAMs. CK2A1-mediated phosphorylation of PACS2 at Ser207/208/213 facilitates MAM localization of the CK2A1-PACS2-PKD2 complex, regulating PKD2-dependent mitochondrial Ca2+ influx. We further reveal that mutations of PACS2 (E209K and E211K) associated with developmental and epileptic encephalopathy-66 (DEE66) impair MAM integrity through the disturbance of PACS2 phosphorylation at Ser207/208/213. This, in turn, causes the reduction of mitochondrial Ca2+ uptake and the dramatic increase of the cytosolic Ca2+ level, thereby, inducing neurotransmitter release at the axon boutons of glutamatergic neurons. In conclusion, our findings suggest a molecular mechanism that MAM alterations induced by pathological PACS2 mutations modulate Ca2+-dependent neurotransmitter release.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Fosforilación , Neurotransmisores/metabolismo
3.
EMBO J ; 38(15): e100871, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31304984

RESUMEN

Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Tiorredoxinas/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Retículo Endoplásmico/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma/metabolismo , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , NADPH Oxidasa 4/metabolismo , Trasplante de Neoplasias , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Análisis de Supervivencia , Tiorredoxinas/genética , Regulación hacia Arriba
4.
Eur J Neurosci ; 56(8): 5177-5190, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36083288

RESUMEN

Multiple sclerosis (MS) and its animal models are characterized by cellular inflammation within the central nervous system (CNS). The sources and consequences of this inflammation are currently not completely understood. Critical signs and mediators of CNS inflammation are reactive oxygen species (ROS) that promote inflammation. ROS originate from a variety of redox-reactive enzymes, one class of which catalyses oxidative protein folding within the endoplasmic reticulum (ER). Here, the unfolded protein response and other signalling mechanisms maintain a balance between ROS producers such as ER oxidoreductin 1α (Ero1α) and antioxidants such as glutathione peroxidase 8 (GPx8). The role of ROS production within the ER has so far not been examined in the context of MS. In this manuscript, we examined how components of the ER redox network change upon MS and experimental autoimmune encephalomyelitis (EAE). We found that unlike GPx8, Ero1α increases within both MS and EAE astrocytes, in parallel with an imbalance of other oxidases such of GPx7, and that no change was observed within neurons. This imbalance of ER redox enzymes can reduce the lifespan of astrocytes, while neurons are not affected. Therefore, Ero1α induction makes astrocytes vulnerable to oxidative stress in the MS and EAE pathologies.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Inflamación , Especies Reactivas de Oxígeno/metabolismo
6.
FASEB J ; 34(9): 12577-12598, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32677089

RESUMEN

Neuropathic pain is a common symptom of multiple sclerosis (MS) and current treatment options are ineffective. In this study, we investigated whether endoplasmic reticulum (ER) stress in dorsal root ganglia (DRG) contributes to pain hypersensitivity in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Inflammatory cells and increased levels of ER stress markers are evident in post-mortem DRGs from MS patients. Similarly, we observed ER stress in the DRG of mice with EAE and relieving ER stress with a chemical chaperone, 4-phenylbutyric acid (4-PBA), reduced pain hypersensitivity. In vitro, 4-PBA and the selective PERK inhibitor, AMG44, normalize cytosolic Ca2+ transients in putative DRG nociceptors. We went on to assess disease-mediated changes in the functional properties of Ca2+ -sensitive BK-type K+ channels in DRG neurons. We found that the conductance-voltage (GV) relationship of BK channels was shifted to a more positive voltage, together with a more depolarized resting membrane potential in EAE cells. Our results suggest that ER stress in sensory neurons of MS patients and mice with EAE is a source of pain and that ER stress modulators can effectively counteract this phenotype.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Estrés del Retículo Endoplásmico , Ganglios Espinales/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Ganglios Espinales/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Países Bajos , Nociceptores/patología
7.
Mol Pain ; 16: 1744806920946889, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32787562

RESUMEN

Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Dolor Crónico/metabolismo , Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neuralgia/metabolismo , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/genética , Retículo Endoplásmico/genética , Humanos , Mitocondrias/genética , Mitocondrias/patología , Neuralgia/genética , Transducción de Señal/genética
8.
J Cell Sci ; 130(11): 1865-1876, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28476937

RESUMEN

Vertebrate proteins that fulfill multiple and seemingly disparate functions are increasingly recognized as vital solutions to maintaining homeostasis in the face of the complex cell and tissue physiology of higher metazoans. However, the molecular adaptations that underpin this increased functionality remain elusive. In this Commentary, we review the PACS proteins - which first appeared in lower metazoans as protein traffic modulators and evolved in vertebrates to integrate cytoplasmic protein traffic and interorganellar communication with nuclear gene expression - as examples of protein adaptation 'caught in the act'. Vertebrate PACS-1 and PACS-2 increased their functional density and roles as metabolic switches by acquiring phosphorylation sites and nuclear trafficking signals within disordered regions of the proteins. These findings illustrate one mechanism by which vertebrates accommodate their complex cell physiology with a limited set of proteins. We will also highlight how pathogenic viruses exploit the PACS sorting pathways as well as recent studies on PACS genes with mutations or altered expression that result in diverse diseases. These discoveries suggest that investigation of the evolving PACS protein family provides a rich opportunity for insight into vertebrate cell and organ homeostasis.


Asunto(s)
Homeostasis/genética , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Obesidad/genética , Proteínas de Transporte Vesicular/genética , Adaptación Biológica , Animales , Apoptosis , Transporte Biológico , Señalización del Calcio , Secuencia Conservada , Regulación de la Expresión Génica , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Obesidad/metabolismo , Obesidad/patología , Filogenia , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
J Neuroinflammation ; 14(1): 19, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28115010

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) stress is a hallmark of neurodegenerative diseases such as multiple sclerosis (MS). However, this physiological mechanism has multiple manifestations that range from impaired clearance of unfolded proteins to altered mitochondrial dynamics and apoptosis. While connections between the triggering of the unfolded protein response (UPR) and downstream mitochondrial dysfunction are poorly understood, the membranous contacts between the ER and mitochondria, called the mitochondria-associated membrane (MAM), could provide a functional link between these two mechanisms. Therefore, we investigated whether the guanosine triphosphatase (GTPase) Rab32, a known regulator of the MAM, mitochondrial dynamics, and apoptosis, could be associated with ER stress as well as mitochondrial dysfunction. METHODS: We assessed Rab32 expression in MS patient and experimental autoimmune encephalomyelitis (EAE) tissue, via observation of mitochondria in primary neurons and via monitoring of survival of neuronal cells upon increased Rab32 expression. RESULTS: We found that the induction of Rab32 and other MAM proteins correlates with ER stress proteins in MS brain, as well as in EAE, and occurs in multiple central nervous system (CNS) cell types. We identify Rab32, known to increase in response to acute brain inflammation, as a novel unfolded protein response (UPR) target. High Rab32 expression shortens neurite length, alters mitochondria morphology, and accelerates apoptosis/necroptosis of human primary neurons and cell lines. CONCLUSIONS: ER stress is strongly associated with Rab32 upregulation in the progression of MS, leading to mitochondrial dysfunction and neuronal death.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Enfermedades Mitocondriales/etiología , Esclerosis Múltiple/complicaciones , Neuronas/metabolismo , Neuronas/ultraestructura , Proteínas de Unión al GTP rab/metabolismo , Animales , Apoptosis/fisiología , Encéfalo/citología , Calnexina/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Feto , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/patología , Esclerosis Múltiple/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción CHOP/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/ultraestructura
10.
Adv Exp Med Biol ; 997: 1-12, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815518

RESUMEN

Cell biology has long recognized that organelles can communicate with each other. Initially, such communication was thought to occur primarily via vesicular trafficking between biochemically distinct organelles. However, studies starting in the 1970s on lipid metabolism have unearthed another way how organelles can communicate and have spawned the field of membrane contact sites (MCS). While, initially, MCS had been recognized as fluid entities that mediate lipid and ion transport in an ad hoc manner, more recently MCS have been found to depend on protein-protein interactions that control themselves a variety of MCS functions. As a result, the cell biological definition of an intracellular organelle as an isolated membrane compartment is now being revised. Accordingly, the organelle definition now describes organelles as dynamic membrane compartments that function in a milieu of coordinated contacts with other organelles. Through these mercurial functions, MCS dictate the function of organelles to a large extent but also play important roles in a number of diseases, including type 2 diabetes, neurodegenerative diseases, infections, and cancer. This book assembles reviews that describe our quickly evolving knowledge about organellar communication on MCS and the significance of MCS for disease.


Asunto(s)
Investigación Biomédica/tendencias , Biología Celular/tendencias , Membranas Intracelulares/fisiología , Microdominios de Membrana/fisiología , Orgánulos/fisiología , Transducción de Señal , Animales , Humanos , Membranas Intracelulares/metabolismo , Transporte Iónico , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Orgánulos/metabolismo , Unión Proteica
11.
Adv Exp Med Biol ; 997: 13-31, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815519

RESUMEN

The discovery of proteins regulating ER-mitochondria tethering including phosphofurin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2 has pushed contact sites between the endoplasmic reticulum (ER) and mitochondria into the spotlight of cell biology. While the field is developing rapidly and controversies have come and gone multiple times during its history, it is sometimes overlooked that significant research has been done decades ago with the original discovery of these structures in the 1950s and the first characterization of their function (and coining of the term mitochondria-associated membrane, MAM) in 1990. Today, an ever-increasing array of proteins localize to the MAM fraction of the endoplasmic reticulum (ER) to regulate the interaction of this organelle with mitochondria. These mitochondria-ER contacts, sometimes referred to as MERCs, regulate a multitude of biological functions, including lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy, mitochondrial structure, and apoptosis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Transducción de Señal , Animales , Transporte Biológico , Señalización del Calcio , Retículo Endoplásmico/patología , Humanos , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/patología , Mitocondrias/patología , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/patología , Esteroles/metabolismo
12.
EMBO J ; 31(2): 457-70, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22045338

RESUMEN

The mitochondria-associated membrane (MAM) is a domain of the endoplasmic reticulum (ER) that mediates the exchange of ions, lipids and metabolites between the ER and mitochondria. ER chaperones and oxidoreductases are critical components of the MAM. However, the localization motifs and mechanisms for most MAM proteins have remained elusive. Using two highly related ER oxidoreductases as a model system, we now show that palmitoylation enriches ER-localized proteins on the MAM. We demonstrate that palmitoylation of cysteine residue(s) adjacent to the membrane-spanning domain promotes MAM enrichment of the transmembrane thioredoxin family protein TMX. In addition to TMX, our results also show that calnexin shuttles between the rough ER and the MAM depending on its palmitoylation status. Mutation of the TMX and calnexin palmitoylation sites and chemical interference with palmitoylation disrupt their MAM enrichment. Since ER-localized heme oxygenase-1, but not cytosolic GRP75 require palmitoylation to reside on the MAM, our findings identify palmitoylation as key for MAM enrichment of ER membrane proteins.


Asunto(s)
Calnexina/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Procesamiento Proteico-Postraduccional , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Animales , Calnexina/química , Calnexina/genética , Línea Celular Tumoral , Cisteína/metabolismo , Perros , Células HeLa , Hemo-Oxigenasa 1/metabolismo , Humanos , Lipoilación , Melanoma/patología , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Transporte de Proteínas
13.
Biochem Soc Trans ; 44(2): 452-9, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068954

RESUMEN

The endoplasmic reticulum (ER) is the main cellular Ca(2+)storage unit. Among other signalling outputs, the ER can release Ca(2+)ions, which can, for instance, communicate the status of ER protein folding to the cytosol and to other organelles, in particular the mitochondria. As a consequence, ER Ca(2+)flux can alter the apposition of the ER with mitochondria, influence mitochondrial ATP production or trigger apoptosis. All aspects of ER Ca(2+)flux have emerged as processes that are intimately controlled by intracellular redox conditions. In this review, we focus on ER-luminal redox-driven regulation of Ca(2+)flux. This involves the direct reduction of disulfides within ER Ca(2+)handling proteins themselves, but also the regulated interaction of ER chaperones and oxidoreductases such as calnexin or ERp57 with them. Well-characterized examples are the activating interactions of Ero1α with inositol 1,4,5-trisphosphate receptors (IP3Rs) or of selenoprotein N (SEPN1) with sarco/endoplasmic reticulum Ca(2+)transport ATPase 2 (SERCA2). The future discovery of novel ER-luminal modulators of Ca(2+)handling proteins is likely. Based on the currently available information, we describe how the variable ER redox conditions govern Ca(2+)flux from the ER.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico/metabolismo , Compuestos de Selenio/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Secuencia de Aminoácidos , Animales , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Chaperonas Moleculares/metabolismo , Oxidación-Reducción , Homología de Secuencia de Aminoácido
14.
J Cell Sci ; 126(Pt 17): 3893-903, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23843619

RESUMEN

The palmitoylation of calnexin serves to enrich calnexin on the mitochondria-associated membrane (MAM). Given a lack of information on the significance of this finding, we have investigated how this endoplasmic reticulum (ER)-internal sorting signal affects the functions of calnexin. Our results demonstrate that palmitoylated calnexin interacts with sarcoendoplasmic reticulum (SR) Ca(2+) transport ATPase (SERCA) 2b and that this interaction determines ER Ca(2+) content and the regulation of ER-mitochondria Ca(2+) crosstalk. In contrast, non-palmitoylated calnexin interacts with the oxidoreductase ERp57 and performs its well-known function in quality control. Interestingly, our results also show that calnexin palmitoylation is an ER-stress-dependent mechanism. Following a short-term ER stress, calnexin quickly becomes less palmitoylated, which shifts its function from the regulation of Ca(2+) signaling towards chaperoning and quality control of known substrates. These changes also correlate with a preferential distribution of calnexin to the MAM under resting conditions, or the rough ER and ER quality control compartment (ERQC) following ER stress. Our results have therefore identified the switch that assigns calnexin either to Ca(2+) signaling or to protein chaperoning.


Asunto(s)
Calnexina/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Lipoilación/fisiología , Membranas Mitocondriales/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Células 3T3 , Animales , Calcio/metabolismo , Señalización del Calcio , Línea Celular , Retículo Endoplásmico/metabolismo , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Ratones , Mitocondrias/metabolismo , Proteína Disulfuro Isomerasas/metabolismo
15.
Biochim Biophys Acta ; 1833(1): 213-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22575682

RESUMEN

More than a billion years ago, bacterial precursors of mitochondria became endosymbionts in what we call eukaryotic cells today. The true significance of the word "endosymbiont" has only become clear to cell biologists with the discovery that the endoplasmic reticulum (ER) superorganelle dedicates a special domain for the metabolic interaction with mitochondria. This domain, identified in all eukaryotic cell systems from yeast to man and called the mitochondria-associated membrane (MAM), has a distinct proteome, specific tethers on the cytosolic face and regulatory proteins in the ER lumen of the ER. The MAM has distinct biochemical properties and appears as ER tubules closely apposed to mitochondria on electron micrographs. The functions of the MAM range from lipid metabolism and calcium signaling to inflammasome formation. Consistent with these functions, the MAM is enriched in lipid metabolism enzymes and calcium handling proteins. During cellular stress situations, like an altered cellular redox state, the MAM alters its set of regulatory proteins and thus alters MAM functions. Notably, this set prominently comprises ER chaperones and oxidoreductases that connect protein synthesis and folding inside the ER to mitochondrial metabolism. Moreover, ER membranes associated with mitochondria also accommodate parts of the machinery that determines mitochondrial membrane dynamics and connect mitochondria to the cytoskeleton. Together, these exciting findings demonstrate that the physiological interactions between the ER and mitochondria are so bilateral that we are tempted to compare their relationship to the one of a married couple: distinct, but inseparable and certainly dependent on each other. In this paradigm, the MAM stands for the intracellular location where the two organelles tie the knot. Resembling "real life", the happy marriage between the two organelles prevents the onset of diseases that are characterized by disrupted metabolism and decreased lifespan, including neurodegeneration and cancer. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.


Asunto(s)
Membrana Celular/fisiología , Retículo Endoplásmico/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/fisiología , Animales , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Modelos Biológicos
16.
Cell Rep Med ; 5(3): 101439, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38402623

RESUMEN

Selenoprotein N (SEPN1) is a protein of the endoplasmic reticulum (ER) whose inherited defects originate SEPN1-related myopathy (SEPN1-RM). Here, we identify an interaction between SEPN1 and the ER-stress-induced oxidoreductase ERO1A. SEPN1 and ERO1A, both enriched in mitochondria-associated membranes (MAMs), are involved in the redox regulation of proteins. ERO1A depletion in SEPN1 knockout cells restores ER redox, re-equilibrates short-range MAMs, and rescues mitochondrial bioenergetics. ERO1A knockout in a mouse background of SEPN1 loss blunts ER stress and improves multiple MAM functions, including Ca2+ levels and bioenergetics, thus reversing diaphragmatic weakness. The treatment of SEPN1 knockout mice with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) mirrors the results of ERO1A loss. Importantly, muscle biopsies from patients with SEPN1-RM exhibit ERO1A overexpression, and TUDCA-treated SEPN1-RM patient-derived primary myoblasts show improvement in bioenergetics. These findings point to ERO1A as a biomarker and a viable target for intervention and to TUDCA as a pharmacological treatment for SEPN1-RM.


Asunto(s)
Proteínas Musculares , Enfermedades Musculares , Humanos , Ratones , Animales , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Oxidorreductasas , Ratones Noqueados
17.
J Cell Sci ; 124(Pt 13): 2143-52, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21628424

RESUMEN

Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell death response, remain unknown. Here, we show that, during the onset of ER stress, the reticular and mitochondrial networks are redistributed towards the perinuclear area and their points of connection are increased in a microtubule-dependent fashion. A localized increase in mitochondrial transmembrane potential is observed only in redistributed mitochondria, whereas mitochondria that remain in other subcellular zones display no significant changes. Spatial re-organization of these organelles correlates with an increase in ATP levels, oxygen consumption, reductive power and increased mitochondrial Ca²âº uptake. Accordingly, uncoupling of the organelles or blocking Ca²âº transfer impaired the metabolic response, rendering cells more vulnerable to ER stress. Overall, these data indicate that ER stress induces an early increase in mitochondrial metabolism that depends crucially upon organelle coupling and Ca²âº transfer, which, by enhancing cellular bioenergetics, establishes the metabolic basis for the adaptation to this response.


Asunto(s)
Retículo Endoplásmico/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Estrés Fisiológico , Antibacterianos/farmacología , Apoptosis/fisiología , Calcio/metabolismo , Respiración de la Célula , Inhibidores Enzimáticos/farmacología , Células HeLa , Agonistas de los Receptores Histamínicos/farmacología , Humanos , Potencial de la Membrana Mitocondrial , Consumo de Oxígeno/efectos de los fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal/fisiología
18.
J Immunol ; 187(9): 4861-72, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21964027

RESUMEN

Multiple sclerosis (MS) is considered an autoimmune disease of the CNS and is characterized by inflammatory cells infiltrating the CNS and inducing demyelination, axonal loss, and neuronal death. Recent evidence strongly suggests that axonal and neuronal degeneration underlie the progression of permanent disability in MS. In this study, we report that human neurons are selectively susceptible to the serine-protease granzyme B (GrB) isolated from cytotoxic T cell granules. In vitro, purified human GrB induced neuronal death to the same extent as the whole activated T cell population. On the contrary, activated T cells isolated from GrB knockout mice failed to induce neuronal injury. We found that following internalization through various parts of neurons, GrB accumulated in the neuronal soma. Within the cell body, GrB diffused out of endosomes possibly through a perforin-independent mechanism and induced subsequent activation of caspases and cleavage of α-tubulin. Inhibition of caspase-3, a well-known substrate for GrB, significantly reduced GrB-mediated neurotoxicity. We demonstrated that treatment of neurons with mannose-6-phosphate prevented GrB entry and inhibited GrB-mediated neuronal death, suggesting mannose-6-phosphate receptor-dependent endocytosis. Together, our data unveil a novel mechanism by which GrB induces selective neuronal injury and suggest potential new targets for the treatment of inflammatory-mediated neurodegeneration in diseases such as MS.


Asunto(s)
Gránulos Citoplasmáticos/enzimología , Gránulos Citoplasmáticos/inmunología , Granzimas/fisiología , Activación de Linfocitos/inmunología , Neuronas/enzimología , Neuronas/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto , Animales , Encéfalo/embriología , Encéfalo/enzimología , Encéfalo/inmunología , Muerte Celular/inmunología , Células Cultivadas , Técnicas de Cocultivo , Gránulos Citoplasmáticos/metabolismo , Pruebas Inmunológicas de Citotoxicidad/métodos , Granzimas/metabolismo , Granzimas/toxicidad , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Neuronas/citología , Linfocitos T Citotóxicos/enzimología , Linfocitos T Citotóxicos/metabolismo
19.
Cell Rep ; 42(1): 111899, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36586409

RESUMEN

Endoplasmic reticulum (ER) homeostasis requires molecular regulators that tailor mitochondrial bioenergetics to the needs of protein folding. For instance, calnexin maintains mitochondria metabolism and mitochondria-ER contacts (MERCs) through reactive oxygen species (ROS) from NADPH oxidase 4 (NOX4). However, induction of ER stress requires a quick molecular rewiring of mitochondria to adapt to new energy needs. This machinery is not characterized. We now show that the oxidoreductase ERO1⍺ covalently interacts with protein kinase RNA-like ER kinase (PERK) upon treatment with tunicamycin. The PERK-ERO1⍺ interaction requires the C-terminal active site of ERO1⍺ and cysteine 216 of PERK. Moreover, we show that the PERK-ERO1⍺ complex promotes oxidization of MERC proteins and controls mitochondrial dynamics. Using proteinaceous probes, we determined that these functions improve ER-mitochondria Ca2+ flux to maintain bioenergetics in both organelles, while limiting oxidative stress. Therefore, the PERK-ERO1⍺ complex is a key molecular machinery that allows quick metabolic adaptation to ER stress.


Asunto(s)
Mitocondrias , Oxidorreductasas , Oxidorreductasas/metabolismo , Mitocondrias/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Estrés Oxidativo
20.
Biochim Biophys Acta ; 1813(10): 1893-905, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21756943

RESUMEN

The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first listed what was known at the time about domain formation within the ER. In the time that has passed since, additional ER domains have been discovered and characterized. These include the mitochondria-associated membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD) occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2 (PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM.


Asunto(s)
Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Transducción de Señal/fisiología , Animales , Membrana Celular/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología , Modelos Biológicos , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda