Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 19(5): e1011325, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130129

RESUMEN

Malaria-causing parasites achieve rapid proliferation in human blood through multiple rounds of asynchronous nuclear division followed by daughter cell formation. Nuclear divisions critically depend on the centriolar plaque, which organizes intranuclear spindle microtubules. The centriolar plaque consists of an extranuclear compartment, which is connected via a nuclear pore-like structure to a chromatin-free intranuclear compartment. Composition and function of this non-canonical centrosome remain largely elusive. Centrins, which reside in the extranuclear part, are among the very few centrosomal proteins conserved in Plasmodium falciparum. Here we identify a novel centrin-interacting centriolar plaque protein. Conditional knock down of this Sfi1-like protein (PfSlp) caused a growth delay in blood stages, which correlated with a reduced number of daughter cells. Surprisingly, intranuclear tubulin abundance was significantly increased, which raises the hypothesis that the centriolar plaque might be implicated in regulating tubulin levels. Disruption of tubulin homeostasis caused excess microtubules and aberrant mitotic spindles. Time-lapse microscopy revealed that this prevented or delayed mitotic spindle extension but did not significantly interfere with DNA replication. Our study thereby identifies a novel extranuclear centriolar plaque factor and establishes a functional link to the intranuclear compartment of this divergent eukaryotic centrosome.


Asunto(s)
Microtúbulos , Proteínas Protozoarias , Tubulina (Proteína) , Centrosoma/metabolismo , Homeostasis , Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Plasmodium falciparum , Proteínas Protozoarias/genética
2.
J Cell Sci ; 131(12)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29848657

RESUMEN

The vascular endothelium is exposed to three types of mechanical forces: blood flow-mediated shear stress, vessel diameter-dependent wall tension and hydrostatic pressure. Despite considerable variations of blood pressure during normal and pathological physiology, little is known about the acute molecular and cellular effects of hydrostatic pressure on endothelial cells. Here, we used a combination of quantitative fluorescence microscopy, atomic force microscopy and molecular perturbations to characterize the specific response of endothelial cells to application of pressure. We identified a two-phase response of endothelial cells with an initial response to acute (1 h) application of pressure (100 mmHg) followed by a different response to chronic (24 h) application. While both regimes induce cortical stiffening, the acute response is linked to Ca2+-mediated myosin activation, whereas the chronic cell response is dominated by increased cortical actin density and a loss in endothelial barrier function. GsMTx-4 and amiloride inhibit the acute pressure response, which suggests that the ENaC Na+ channel is a key player in endothelial pressure sensing. The described two-phase pressure response may participate in the differential effects of transient changes in blood pressure and hypertension.


Asunto(s)
Células Endoteliales/metabolismo , Presión Hidrostática , Humanos
3.
Mol Biochem Parasitol ; 229: 47-52, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30831155

RESUMEN

Immunofluorescence staining is the key technique for visualizing organization of endogenous cellular structures in single cells. Labeling and imaging of blood stage Plasmodium falciparum has always been challenging since it is a small intracellular parasite. A widely-used standard for parasite immunofluorescence is fixation in suspension with addition of minute amounts of glutaraldehyde to the paraformaldehyde-based solution. While this maintains red blood cell integrity, it has been postulated that antigenicity of the parasite proteins was, if at all, only slightly reduced. Here we show the deleterious effect that even these small quantities of glutaraldehyde can have on immunofluorescence staining quality and present an alternative cell seeding protocol that allows fixation with only paraformaldehyde. The highly improved signal intensity and staining efficiency enabled us to carry out RescueSTED nanoscopy on microtubules and nuclear pores and describe their organization in greater detail throughout the blood stage cycle.


Asunto(s)
Eritrocitos/química , Eritrocitos/parasitología , Técnica del Anticuerpo Fluorescente/métodos , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Colorantes Fluorescentes/química , Humanos , Nanotecnología , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda