Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36607602

RESUMEN

Hemochorial placentation involves the differentiation of invasive trophoblast cells, specialized cells that possess the capacity to exit the placenta and invade into the uterus where they restructure the vasculature. Invasive trophoblast cells arise from a well-defined compartment within the placenta, referred to as the junctional zone in rat and the extravillous trophoblast cell column in human. In this study, we investigated roles for AKT1, a serine/threonine kinase, in placental development using a genome-edited/loss-of-function rat model. Disruption of AKT1 resulted in placental, fetal and postnatal growth restriction. Forkhead box O4 (Foxo4), which encodes a transcription factor and known AKT substrate, was abundantly expressed in the junctional zone and in invasive trophoblast cells of the rat placentation site. Foxo4 gene disruption using genome editing resulted in placentomegaly, including an enlarged junctional zone. AKT1 and FOXO4 regulate the expression of many of the same transcripts expressed by trophoblast cells, but in opposite directions. In summary, we have identified AKT1 and FOXO4 as part of a regulatory network that reciprocally controls critical indices of hemochorial placenta development.


Asunto(s)
Placenta , Placentación , Animales , Femenino , Embarazo , Ratas , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Placenta/metabolismo , Placentación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trofoblastos , Útero
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649217

RESUMEN

Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula/fisiología , Placentación/fisiología , Embarazo/metabolismo , Trofoblastos/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Humanos , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo
3.
FASEB J ; 35(2): e21272, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33423320

RESUMEN

Interleukin 33 (IL33) signaling has been implicated in the establishment and maintenance of pregnancy and in pregnancy disorders. The goal of this project was to evaluate the role of IL33 signaling in rat pregnancy. The rat possesses hemochorial placentation with deep intrauterine trophoblast invasion; features also characteristic of human placentation. We generated and characterized a germline mutant rat model for IL33 using CRISPR/Cas9 genome editing. IL33 deficient rats exhibited deficits in lung responses to an inflammatory stimulus (Sephadex G-200) and to estrogen-induced uterine eosinophilia. Female rats deficient in IL33 were fertile and exhibited pregnancy outcomes (gestation length and litter size) similar to wild-type rats. Placental weight was adversely affected by the disruption of IL33 signaling. A difference in pregnancy-dependent adaptations to lipopolysaccharide (LPS) exposure was observed between wild-type and IL33 deficient pregnancies. Pregnancy in wild-type rats treated with LPS did not differ significantly from pregnancy in vehicle-treated wild-type rats. In contrast, LPS treatment decreased fetal survival rate, fetal and placental weights, and increased fetal growth restriction in IL33 deficient rats. In summary, a new rat model for investigating IL33 signaling has been established. IL33 signaling participates in the regulation of placental development and protection against LPS-induced fetal and placental growth restriction.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Interleucina-33/metabolismo , Enfermedades Placentarias/metabolismo , Complicaciones Infecciosas del Embarazo/metabolismo , Transducción de Señal , Animales , Femenino , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/patología , Interleucina-33/genética , Lipopolisacáridos/toxicidad , Mutación , Enfermedades Placentarias/etiología , Enfermedades Placentarias/patología , Embarazo , Complicaciones Infecciosas del Embarazo/etiología , Complicaciones Infecciosas del Embarazo/patología , Resultado del Embarazo , Ratas , Ratas Sprague-Dawley
4.
Microcirculation ; 28(8): e12727, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34467606

RESUMEN

INTRODUCTION: Prolonged mechanical ventilation (MV; ≥6 h) results in large, time-dependent reductions in diaphragmatic blood flow and shear stress. We tested the hypothesis that MV would impair the structural and material properties (ie, increased stress/stretch relation and/or circumferential stretch) of first-order arterioles (1A) from the medial costal diaphragm. METHODS: Shear stress was estimated from isolated arterioles and prior blood flow data from the diaphragm during spontaneous breathing (SB) and prolonged MV (6 h MV). Thereafter, female Sprague-Dawley rats (~5 months) were randomly divided into two groups, SB (n = 6) and 6 h MV (n = 6). Following SB and 6 h MV, 1A medial costal diaphragm arterioles were isolated, cannulated, and subjected to stepwise (0-140 cmH2 O) increases in intraluminal pressure in calcium-free Ringer's solution. Inner diameter and wall thickness were measured at each pressure step and used to calculate wall:lumen ratio, Cauchy-stress, and circumferential stretch. RESULTS: Compared to SB, there was a ~90% reduction in arteriolar shear stress with prolonged MV (9 ± 2 vs 78 ± 20 dynes/cm2 ; p ≤ .05). In the unloaded condition (0 cmH2 O), the arteriolar intraluminal diameter was reduced (37 ± 8 vs 79 ± 13 µm) and wall:lumen ratio was increased (120 ± 18 vs 46 ± 10%) compared to SB (p ≤ .05). There were no differences in the passive diameter responses or the circumferential stress/stretch relationship between groups (p > .05), but at each pressure step, circumferential stretch was increased with 6 h MV vs SB (p ≤ .05). CONCLUSION: During prolonged MV, medial costal diaphragm arteriolar shear stress is severely diminished. Despite no change in the material behavior (stress/stretch), prolonged MV resulted in altered structural and mechanical properties (ie, elevated circumferential stretch) of medial costal diaphragm arterioles. This provides important novel mechanistic insights into the impaired diaphragm blood flow capacity and vascular dysfunction following prolonged MV.


Asunto(s)
Diafragma , Respiración Artificial , Animales , Arteriolas , Diafragma/fisiología , Femenino , Contracción Muscular/fisiología , Ratas , Ratas Sprague-Dawley , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Ventiladores Mecánicos
5.
Artículo en Inglés | MEDLINE | ID: mdl-32595139

RESUMEN

INTRODUCTION: The hemochorial placenta provides a critical barrier at the maternal-fetal interface to modulate maternal immune tolerance and enable gas and nutrient exchange between mother and conceptus. Pregnancy outcomes are adversely affected by diabetes mellitus; however, the effects of poorly controlled diabetes on placental formation, and subsequently fetal development, are not fully understood. RESEARCH DESIGN AND METHODS: Streptozotocin was used to induce hyperglycemia in pregnant rats for the purpose of investigating the impact of poorly controlled diabetes on placental formation and fetal development. The experimental paradigm of hypoxia exposure in the pregnant rat was also used to assess properties of placental plasticity. Euglycemic and hyperglycemic rats were exposed to ambient conditions (~21% oxygen) or hypoxia (10.5% oxygen) beginning on gestation day (gd) 6.5 and sacrificed on gd 13.5. To determine whether the interaction of hyperglycemia and hypoxia was directly altering trophoblast lineage development, rat trophoblast stem (TS) cells were cultured in high glucose (25 mM) and/or exposed to low oxygen (0.5% to 1.5%). RESULTS: Diabetes caused placentomegaly and placental malformation, decreasing placental efficiency and fetal size. Elevated glucose disrupted rat TS cell differentiation in vitro. Evidence of altered trophoblast differentiation was also observed in vivo, as hyperglycemia affected the junctional zone transcriptome and interfered with intrauterine trophoblast invasion and uterine spiral artery remodeling. When exposed to hypoxia, hyperglycemic rats showed decreased proliferation and ectoplacental cone development on gd 9.5 and complete pregnancy loss by gd 13.5. Furthermore, elevated glucose concentrations inhibited TS cell responses to hypoxia in vitro. CONCLUSIONS: Overall, these results indicate that alterations in placental development, efficiency, and plasticity could contribute to the suboptimal fetal outcomes in offspring from pregnancies complicated by poorly controlled diabetes.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Animales , Femenino , Placenta , Placentación , Embarazo , Ratas , Trofoblastos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda