Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Front Robot AI ; 11: 1431826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360225

RESUMEN

The rapidly increasing capabilities of autonomous mobile robots promise to make them ubiquitous in the coming decade. These robots will continue to enhance efficiency and safety in novel applications such as disaster management, environmental monitoring, bridge inspection, and agricultural inspection. To operate autonomously without constant human intervention, even in remote or hazardous areas, robots must sense, process, and interpret environmental data using only onboard sensing and computation. This capability is made possible by advancements in perception algorithms, allowing these robots to rely primarily on their perception capabilities for navigation tasks. However, tiny robot autonomy is hindered mainly by sensors, memory, and computing due to size, area, weight, and power constraints. The bottleneck in these robots lies in the real-time perception in resource-constrained robots. To enable autonomy in robots of sizes that are less than 100 mm in body length, we draw inspiration from tiny organisms such as insects and hummingbirds, known for their sophisticated perception, navigation, and survival abilities despite their minimal sensor and neural system. This work aims to provide insights into designing a compact and efficient minimal perception framework for tiny autonomous robots from higher cognitive to lower sensor levels.

2.
Sci Robot ; 9(90): eadj8124, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809998

RESUMEN

Neuromorphic vision sensors or event cameras have made the visual perception of extremely low reaction time possible, opening new avenues for high-dynamic robotics applications. These event cameras' output is dependent on both motion and texture. However, the event camera fails to capture object edges that are parallel to the camera motion. This is a problem intrinsic to the sensor and therefore challenging to solve algorithmically. Human vision deals with perceptual fading using the active mechanism of small involuntary eye movements, the most prominent ones called microsaccades. By moving the eyes constantly and slightly during fixation, microsaccades can substantially maintain texture stability and persistence. Inspired by microsaccades, we designed an event-based perception system capable of simultaneously maintaining low reaction time and stable texture. In this design, a rotating wedge prism was mounted in front of the aperture of an event camera to redirect light and trigger events. The geometrical optics of the rotating wedge prism allows for algorithmic compensation of the additional rotational motion, resulting in a stable texture appearance and high informational output independent of external motion. The hardware device and software solution are integrated into a system, which we call artificial microsaccade-enhanced event camera (AMI-EV). Benchmark comparisons validated the superior data quality of AMI-EV recordings in scenarios where both standard cameras and event cameras fail to deliver. Various real-world experiments demonstrated the potential of the system to facilitate robotics perception both for low-level and high-level vision tasks.


Asunto(s)
Algoritmos , Diseño de Equipo , Robótica , Movimientos Sacádicos , Percepción Visual , Robótica/instrumentación , Humanos , Movimientos Sacádicos/fisiología , Percepción Visual/fisiología , Movimiento (Física) , Programas Informáticos , Tiempo de Reacción/fisiología , Biomimética/instrumentación , Fijación Ocular/fisiología , Movimientos Oculares/fisiología , Visión Ocular/fisiología
3.
Sci Robot ; 8(81): eadd5139, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37585545

RESUMEN

Robots are active agents that operate in dynamic scenarios with noisy sensors. Predictions based on these noisy sensor measurements often lead to errors and can be unreliable. To this end, roboticists have used fusion methods using multiple observations. Lately, neural networks have dominated the accuracy charts for perception-driven predictions for robotic decision-making and often lack uncertainty metrics associated with the predictions. Here, we present a mathematical formulation to obtain the heteroscedastic aleatoric uncertainty of any arbitrary distribution without prior knowledge about the data. The approach has no prior assumptions about the prediction labels and is agnostic to network architecture. Furthermore, our class of networks, Ajna, adds minimal computation and requires only a small change to the loss function while training neural networks to obtain uncertainty of predictions, enabling real-time operation even on resource-constrained robots. In addition, we study the informational cues present in the uncertainties of predicted values and their utility in the unification of common robotics problems. In particular, we present an approach to dodge dynamic obstacles, navigate through a cluttered scene, fly through unknown gaps, and segment an object pile, without computing depth but rather using the uncertainties of optical flow obtained from a monocular camera with onboard sensing and computation. We successfully evaluate and demonstrate the proposed Ajna network on four aforementioned common robotics and computer vision tasks and show comparable results to methods directly using depth. Our work demonstrates a generalized deep uncertainty method and demonstrates its utilization in robotics applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda