Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-38980386

RESUMEN

In this paper, the work has been done to develop a cost-effective methodology, for the isolation of the potential producer of bacterial nanocellulose. No report is available in the literature, on the use of gram flour and table sugar for the screening of nanocellulose-producing isolates. Since commercially used, Hestrin-Schramm medium is expensive for the isolation of nanocellulose-producing micro-organisms, the possibility of using gram flour-table sugar medium was investigated in this work. Qualitative screening of micro-organisms was done using cost-effective medium, i.e., gram flour-table sugar medium. Qualitative analysis of various nanocellulose-producing bacteria depicted that cellulose layer production occurred on both HS medium and gram flour-table sugar medium. The yield of nanocellulose was also better on air-liquid surface in case of gram flour-table sugar medium as compared to HS medium. 16S rRNA was used for molecular characterization of bacterial strain and the best nanocellulose producer was identified as Novacetimonas hansenii BMK-3_NC240423 (isolated from rotten banana). FTIR and FE-SEM studies of nanocellulose pellicle produced on HS medium and gram flour-table sugar medium demonstrated equivalent structural, morphological, and chemical properties. The cost of newly designed medium (0.01967 $/L) is nearly 90 times lower than the Hestrin-Schramm medium (1.748 $/L), which makes the screening of nanocellulose producers very cost-effective. A strategy of using gram flour extract-table sugar medium for the screening of nanocellulose-producing micro-organisms is a novel approach, which will drastically reduce the screening associated cost of cellulose-producing micro-organisms and also motivate the researchers/industries for comprehensive screening programme for getting high cellulose-producing microbes.

2.
Biotechnol Appl Biochem ; 70(5): 1629-1640, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36964948

RESUMEN

Bacteria are considered mini chemical factories that help us in providing a wide range of products for various purposes. These days, bacterial cellulose (BC) is getting attention by researchers due to its quality, eco-friendly nature, and excellent physical-mechanical qualities. It is being used in the fabrication of nanocomposites. Its nanocomposites can be used in various industries, including medicine, food, leather, textiles, environment, electronics, and cosmetics. This area of research is emerging and still in its infancy stage, as new applications are still coming up. Most of the work on BC has been done during the last two decades and serious inputs are required in this direction in order to make the production process commercially viable and ultimately the application part. Biowastes, such as fruits and vegetables wastes, can be used as a cost-effective medium to minimize the cost for large-scale production of BC-based nanocomposites thus will valorize the biowaste material into a valuable product. Using biowaste as media will also aid in better waste management along with reduction in detrimental environmental effects. This review will help the readers to understand the potential applications of BC and its nanocomposites as well as their vital role in our daily lives.


Asunto(s)
Celulosa , Nanocompuestos , Bacterias , Industrias
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda