Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glob Chang Biol ; 29(3): 827-840, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36270799

RESUMEN

Forests contribute to climate change mitigation through carbon storage and uptake, but the extent to which this carbon pool varies in space and time is still poorly known. Several Earth Observation missions have been specifically designed to address this issue, for example, NASA's GEDI, NASA-ISRO's NISAR and ESA's BIOMASS. Yet, all these missions' products require independent and consistent validation. A permanent, global, in situ, site-based forest biomass reference measurement system relying on ground data of the highest possible quality is therefore needed. Here, we have assembled a list of almost 200 high-quality sites through an in-depth review of the literature and expert knowledge. In this study, we explore how representative these sites are in terms of their coverage of environmental conditions, geographical space and biomass-related forest structure, compared to those experienced by forests worldwide. This work also aims at identifying which sites are the most representative, and where to invest to improve the representativeness of the proposed system. We show that the environmental coverage of the system does not seem to improve after at least the 175 most representative sites are included, but geographical and structural coverages continue to improve as more sites are added. We highlight the areas of poor environmental, geographical, or structural coverage, including, but not limited to, Canada, the western half of the USA, Mexico, Patagonia, Angola, Zambia, eastern Russia, and tropical and subtropical highlands (e.g. in Colombia, the Himalayas, Borneo, Papua). For the proposed system to succeed, we stress that (1) data must be collected and processed applying the same standards across all countries and continents; (2) system establishment and management must be inclusive and equitable, with careful consideration of working conditions; and (3) training and site partner involvement in downstream activities should be mandatory.


Asunto(s)
Tecnología de Sensores Remotos , Árboles , Biomasa , Bosques , Carbono , Clima Tropical
2.
Glob Chang Biol ; 25(11): 3609-3624, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31310673

RESUMEN

As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1  year-1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha-1  year-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1  year-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.


Asunto(s)
Árboles , Clima Tropical , África , Asia , Biomasa , Carbono , Bosques , América del Sur
3.
PNAS Nexus ; 1(3): pgac102, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37654970

RESUMEN

What is meant by sustainability depends on what is sustained and at what level. Sustainable forest management, for example, requires maintenance of a variety of values not the least of which is sustained timber yields (STYs). For the 1 Bha of the world's forests subjected to selective or partial logging, failure to maintain yields can be hidden by regulatory requirements and questionable auditing practices such as increasing the number of commercial species with each harvest, reducing the minimum size at which trees can be harvested and accepting logs of lower quality. For assertions of STY to be credible, clarity is needed about all these issues, as well as about the associated ecological and economic tradeoffs. Lack of clarity about sustainability heightens risks of unsubstantiated claims and unseen losses. STY is possible but often requires cutting cycles that are longer and logging intensities that are lower than prescribed by law, as well as effective use of low-impact logging practices and application of silvicultural treatments to promote timber stock recovery. These departures from business-as-usual practices will lower profit margins but generally benefit biodiversity and ecosystem services.

4.
Sci Data ; 6(1): 198, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601817

RESUMEN

Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.


Asunto(s)
Biomasa , Bosques , Tecnología de Sensores Remotos , Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos
5.
Nat Commun ; 9(1): 342, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352254

RESUMEN

The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 8(1): 1966, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259276

RESUMEN

Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.

8.
Carbon Balance Manag ; 11(1): 15, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27525036

RESUMEN

BACKGROUND: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. RESULTS: The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. CONCLUSIONS: We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions.

9.
Elife ; 52016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993185

RESUMEN

When 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors' and recruits' C fluxes to provide Amazon-wide predictions of post-logging C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield and in the west (21 ±3 Mg C ha-1) than in the south (12 ±3 Mg C ha-1) where environmental stress is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia.


Asunto(s)
Ciclo del Carbono , Agricultura Forestal/métodos , Bosques , Simulación por Computador , Sudáfrica
10.
Curr Biol ; 25(18): R787-8, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26394096

RESUMEN

While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions.


Asunto(s)
Biomasa , Carbono/metabolismo , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Bolivia , Brasil , Suriname
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda