Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 145(10): 5960-5969, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857421

RESUMEN

We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.


Asunto(s)
Fumaratos , Imagen por Resonancia Magnética , Ratones , Animales , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Hidrogenación , Medios de Contraste
2.
Magn Reson Med ; 90(3): 894-909, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37093981

RESUMEN

PURPOSE: To develop a high spatiotemporal resolution 3D dynamic pulse sequence for preclinical imaging of hyperpolarized [1-13 C]pyruvate-to-[1-13 C]lactate metabolism at 7T. METHODS: A standard 3D balanced SSFP (bSSFP) sequence was modified to enable alternating-frequency excitations. RF pulses with 2.33 ms duration and 900 Hz FWHM were placed off-resonance of the target metabolites, [1-13 C]pyruvate (by approximately -245 Hz) and [1-13 C]lactate (by approximately 735 Hz), to selectively excite those resonances. Relatively broad bandwidth (compared to those metabolites' chemical shift offset) permits a short TR of 6.29 ms, enabling higher spatiotemporal resolution. Bloch equation simulations of the bSSFP response profile guided the sequence parameter selection to minimize spectral contamination between metabolites and preserve magnetization over time. RESULTS: Bloch equation simulations, phantom studies, and in vivo studies demonstrated that the two target resonances could be cleanly imaged without substantial bSSFP banding artifacts and with little spectral contamination between lactate and pyruvate and from pyruvate hydrate. High spatiotemporal resolution 3D images were acquired of in vivo pyruvate-lactate metabolism in healthy wild-type and endogenous pancreatic tumor-bearing mice, with 1.212 s acquisition time per single-metabolite image and (1.75 mm)3 isotropic voxels with full mouse abdomen 56 × 28 × 21 mm3 FOV and fully-sampled k-space. Kidney and tumor lactate/pyruvate ratios of two consecutive measurements in one animal, 1 h apart, were consistent. CONCLUSION: Spectrally selective bSSFP using off-resonant RF excitations can provide high spatio-temporal resolution 3D dynamic images of pyruvate-lactate metabolic conversion.


Asunto(s)
Ácido Láctico , Ácido Pirúvico , Ratones , Animales , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Fantasmas de Imagen , Isótopos de Carbono/metabolismo
3.
Immunity ; 38(4): 831-44, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23601689

RESUMEN

Systems immunology approaches were employed to investigate innate and adaptive immune responses to influenza and pneumococcal vaccines. These two non-live vaccines show different magnitudes of transcriptional responses at different time points after vaccination. Software solutions were developed to explore correlates of vaccine efficacy measured as antibody titers at day 28. These enabled a further dissection of transcriptional responses. Thus, the innate response, measured within hours in the peripheral blood, was dominated by an interferon transcriptional signature after influenza vaccination and by an inflammation signature after pneumococcal vaccination. Day 7 plasmablast responses induced by both vaccines was more pronounced after pneumococcal vaccination. Together, these results suggest that comparing global immune responses elicited by different vaccines will be critical to our understanding of the immune mechanisms underpinning successful vaccination.


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Interferones/metabolismo , Orthomyxoviridae/inmunología , Infecciones Neumocócicas/inmunología , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Inmunidad Adaptativa , Formación de Anticuerpos , Proliferación Celular , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Interferones/genética , Células Mieloides/inmunología , Neutrófilos/inmunología , Programas Informáticos , Vacunación
4.
Clin Exp Allergy ; 50(9): 1017-1034, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32472607

RESUMEN

BACKGROUND: Anti-IgE (omalizumab) has been used for the treatment of moderate-to-severe asthma that is not controlled by inhaled steroids. Despite its success, it does not always provide patients with significant clinical benefits. OBJECTIVE: To investigate the transcriptional variations between omalizumab responders and non-responders and to study the mechanisms of action of omalizumab. METHODS: The whole blood transcriptomes of moderate-to-severe adult asthma patients (N = 45:34 responders and 11 non-responders) were analysed over the course of omalizumab treatment. Non-asthmatic healthy controls (N = 17) were used as controls. RESULTS: Transcriptome variations between responders and non-responders were identified using the genes significant (FDR < 0.05) in at least one comparison of each patient response status and time point compared with control subjects. Using gene ontology and network analysis, eight clusters of genes were identified. Longitudinal analyses of individual clusters revealed that responders could maintain changes induced with omalizumab treatment and become more similar to the control subjects, while non-responders tend to remain more similar to their pre-treatment baseline. Further analysis of an inflammatory gene cluster revealed that genes associated with neutrophil/eosinophil activities were up-regulated in non-responders and, more importantly, omalizumab did not significantly alter their expression levels. The application of modular analysis supported our findings and further revealed variations between responders and non-responders. CONCLUSION AND CLINICAL RELEVANCE: This study provides not only transcriptional variations between omalizumab responders and non-responders, but also molecular insights for controlling asthma by omalizumab.


Asunto(s)
Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Perfilación de la Expresión Génica , Pulmón/efectos de los fármacos , Omalizumab/uso terapéutico , Transcriptoma , Adulto , Anciano , Antiasmáticos/efectos adversos , Asma/sangre , Asma/genética , Asma/fisiopatología , Biomarcadores/sangre , Estudios de Casos y Controles , Análisis por Conglomerados , Femenino , Redes Reguladoras de Genes , Humanos , Estudios Longitudinales , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Omalizumab/efectos adversos , Transducción de Señal/genética , Resultado del Tratamiento , Adulto Joven
5.
NMR Biomed ; 33(6): e4291, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32154970

RESUMEN

The aim of this study was to acquire the transient MRI signal of hyperpolarized tracers and their metabolites efficiently, for which specialized imaging sequences are required. In this work, a multi-echo balanced steady-state free precession (me-bSSFP) sequence with Iterative Decomposition with Echo Asymmetry and Least squares estimation (IDEAL) reconstruction was implemented on a clinical 3 T positron-emission tomography/MRI system for fast 2D and 3D metabolic imaging. Simulations were conducted to obtain signal-efficient sequence protocols for the metabolic imaging of hyperpolarized biomolecules. The sequence was applied in vitro and in vivo for probing the enzymatic exchange of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate. Chemical shift resolution was achieved using a least-square, iterative chemical species separation algorithm in the reconstruction. In vitro, metabolic conversion rate measurements from me-bSSFP were compared with NMR spectroscopy and free induction decay-chemical shift imaging (FID-CSI). In vivo, a rat MAT-B-III tumor model was imaged with me-bSSFP and FID-CSI. 2D metabolite maps of [1-13 C]pyruvate and [1-13 C]lactate acquired with me-bSSFP showed the same spatial distributions as FID-CSI. The pyruvate-lactate conversion kinetics measured with me-bSSFP and NMR corresponded well. Dynamic 2D metabolite mapping with me-bSSFP enabled the acquisition of up to 420 time frames (scan time: 180-350 ms/frame) before the hyperpolarized [1-13 C]pyruvate was relaxed below noise level. 3D metabolite mapping with a large field of view (180 × 180 × 48 mm3 ) and high spatial resolution (5.6 × 5.6 × 2 mm3 ) was conducted with me-bSSFP in a scan time of 8.2 seconds. It was concluded that Me-bSSFP improves the spatial and temporal resolution for metabolic imaging of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate compared with either of the FID-CSI or EPSI methods reported at 3 T, providing new possibilities for clinical and preclinical applications.


Asunto(s)
Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Ácido Pirúvico/metabolismo , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Simulación por Computador , Espectroscopía de Protones por Resonancia Magnética , Ratas Endogámicas F344 , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
6.
MAGMA ; 33(2): 221-256, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31811491

RESUMEN

Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Animales , Gases , Humanos , Campos Magnéticos , Perfusión , Ondas de Radio , Ratas , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Ventilación
7.
J Infect Dis ; 217(8): 1318-1322, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29325117

RESUMEN

The cynomolgus macaque model of low-dose Mycobacterium tuberculosis infection recapitulates clinical aspects of human tuberculosis pathology, but it is unknown whether the 2 systems are sufficiently similar that host-based signatures of tuberculosis will be predictive across species. By blind prediction, we demonstrate that a subset of genes comprising a human signature for tuberculosis risk is simultaneously predictive in humans and macaques and prospectively discriminates progressor from controller animals 3-6 weeks after infection. Further analysis yielded a 3-gene signature involving PRDX2 that predicts tuberculosis progression in macaques 10 days after challenge, suggesting novel pathways that define protective responses to M. tuberculosis.


Asunto(s)
Macaca fascicularis , Mycobacterium tuberculosis/inmunología , ARN Bacteriano/sangre , Tuberculosis Pulmonar/microbiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Pulmón/patología , Mycobacterium tuberculosis/genética , Tuberculosis Pulmonar/patología
8.
J Immunol ; 197(12): 4817-4828, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27837110

RESUMEN

Whole blood transcriptional profiling offers great diagnostic and prognostic potential. Although studies identified signatures for pulmonary tuberculosis (TB) and transcripts that predict the risk for developing active TB in humans, the early transcriptional changes immediately following Mycobacterium tuberculosis infection have not been evaluated. We evaluated the gene expression changes in the cynomolgus macaque model of TB, which recapitulates all clinical aspects of human M. tuberculosis infection, using a human microarray and analytics platform. We performed genome-wide blood transcriptional analysis on 38 macaques at 11 postinfection time points during the first 6 mo of M. tuberculosis infection. Of 6371 differentially expressed transcripts between preinfection and postinfection, the greatest change in transcriptional activity occurred 20-56 d postinfection, during which fluctuation of innate and adaptive immune response-related transcripts was observed. Modest transcriptional differences between active TB and latent infection were observed over the time course with substantial overlap. The pattern of module activity previously published for human active TB was similar in macaques with active disease. Blood transcript activity was highly correlated with lung inflammation (lung [18F]fluorodeoxyglucose [FDG] avidity) measured by positron emission tomography and computed tomography at early time points postinfection. The differential signatures between animals with high and low lung FDG were stronger than between clinical outcomes. Analysis of preinfection signatures of macaques revealed that IFN signatures could influence eventual clinical outcomes and lung FDG avidity, even before infection. Our data support that transcriptional changes in the macaque model are translatable to human M. tuberculosis infection and offer important insights into early events of M. tuberculosis infection.


Asunto(s)
Células Sanguíneas/fisiología , Pulmón/diagnóstico por imagen , Macaca fascicularis/inmunología , Mycobacterium tuberculosis/inmunología , Neumonía/inmunología , Transcriptoma/inmunología , Tuberculosis Pulmonar/inmunología , Inmunidad Adaptativa/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fluorodesoxiglucosa F18/metabolismo , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/genética , Pulmón/microbiología , Neumonía/genética , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Tuberculosis Pulmonar/genética
9.
PLoS Comput Biol ; 11(6): e1004310, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26111374

RESUMEN

Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Modelos Biológicos , Modelos Estadísticos , Vacunas contra el SIDA , Terapia Antirretroviral Altamente Activa , Análisis por Conglomerados , Bases de Datos Factuales , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Humanos , Vacunas contra la Influenza , Gripe Humana/prevención & control
10.
Nature ; 466(7309): 973-7, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20725040

RESUMEN

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis, is a major cause of morbidity and mortality worldwide. Efforts to control it are hampered by difficulties with diagnosis, prevention and treatment. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease. Current tests, however, cannot identify which individuals will develop disease. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines. Here we identify a whole-blood 393 transcript signature for active TB in intermediate and high-burden settings, correlating with radiological extent of disease and reverting to that of healthy controls after treatment. A subset of patients with latent TB had signatures similar to those in patients with active TB. We also identify a specific 86-transcript signature that discriminates active TB from other inflammatory and infectious diseases. Modular and pathway analysis revealed that the TB signature was dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-gamma and type I IFN-alphabeta signalling. Comparison with transcriptional signatures in purified cells and flow cytometric analysis suggest that this TB signature reflects changes in cellular composition and altered gene expression. Although an IFN-inducible signature was also observed in whole blood of patients with systemic lupus erythematosus (SLE), their complete modular signature differed from TB, with increased abundance of plasma cell transcripts. Our studies demonstrate a hitherto underappreciated role of type I IFN-alphabeta signalling in the pathogenesis of TB, which has implications for vaccine and therapeutic development. Our study also provides a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Interferón Tipo I/inmunología , Neutrófilos/inmunología , Transcripción Genética/genética , Tuberculosis/sangre , Tuberculosis/genética , Sangre/metabolismo , Estudios de Casos y Controles , Humanos , Tuberculosis Latente/sangre , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/genética , Tuberculosis Latente/inmunología , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/genética , Mycobacterium tuberculosis/inmunología , Transducción de Señal , Tuberculosis/diagnóstico , Tuberculosis/inmunología , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/inmunología
11.
PLoS Pathog ; 8(1): e1002480, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22291590

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that persists lifelong in the host. In ∼4% of infected people, HTLV-1 causes a chronic disabling neuroinflammatory disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The pathogenesis of HAM/TSP is unknown and treatment remains ineffective. We used gene expression microarrays followed by flow cytometric and functional assays to investigate global changes in blood transcriptional profiles of HTLV-1-infected and seronegative individuals. We found that perturbations of the p53 signaling pathway were a hallmark of HTLV-1 infection. In contrast, a subset of interferon (IFN)-stimulated genes was over-expressed in patients with HAM/TSP but not in asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The IFN-inducible signature was present in all circulating leukocytes and its intensity correlated with the clinical severity of HAM/TSP. Leukocytes from patients with HAM/TSP were primed to respond strongly to stimulation with exogenous IFN. However, while type I IFN suppressed expression of the HTLV-1 structural protein Gag it failed to suppress the highly immunogenic viral transcriptional transactivator Tax. We conclude that over-expression of a subset of IFN-stimulated genes in chronic HTLV-1 infection does not constitute an efficient host response but instead contributes to the development of HAM/TSP.


Asunto(s)
Regulación de la Expresión Génica , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Interferón Tipo I/metabolismo , Leucocitos/metabolismo , Paraparesia Espástica Tropical/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Productos del Gen gag/metabolismo , Productos del Gen tax/metabolismo , Humanos , Leucocitos/virología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Biología de Sistemas/métodos
12.
Nat Commun ; 14(1): 5060, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604826

RESUMEN

pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.


Asunto(s)
Filtración , Imagen por Resonancia Magnética , Animales , Ratas , Perfusión , Tasa de Filtración Glomerular , Concentración de Iones de Hidrógeno
13.
EJNMMI Res ; 12(1): 24, 2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35460436

RESUMEN

BACKGROUND: Hyperpolarization enhances the sensitivity of nuclear magnetic resonance experiments by between four and five orders of magnitude. Several hyperpolarized sensor molecules have been introduced that enable high sensitivity detection of metabolism and physiological parameters. However, hyperpolarized magnetic resonance spectroscopy imaging (MRSI) often suffers from poor signal-to-noise ratio and spectral analysis is complicated by peak overlap. Here, we study measurements of extracellular pH (pHe) by hyperpolarized zymonic acid, where multiple pHe compartments, such as those observed in healthy kidney or other heterogeneous tissue, result in a cluster of spectrally overlapping peaks, which is hard to resolve with conventional spectroscopy analysis routines. METHODS: We investigate whether deep learning methods can yield improved pHe prediction in hyperpolarized zymonic acid spectra of multiple pHe compartments compared to conventional line fitting. As hyperpolarized 13C-MRSI data sets are often small, a convolutional neural network (CNN) and a multilayer perceptron (MLP) were trained with either a synthetic or a mixed (synthetic and augmented) data set of acquisitions from the kidneys of healthy mice. RESULTS: Comparing the networks' performances compartment-wise on a synthetic test data set and eight real kidney data shows superior performance of CNN compared to MLP and equal or superior performance compared to conventional line fitting. For correct prediction of real kidney pHe values, training with a mixed data set containing only 0.5% real data shows a large improvement compared to training with synthetic data only. Using a manual segmentation approach, pH maps of kidney compartments can be improved by neural network predictions for voxels including three pH compartments. CONCLUSION: The results of this study indicate that CNNs offer a reliable, accurate, fast and non-interactive method for analysis of hyperpolarized 13C MRS and MRSI data, where low amounts of acquired data can be complemented to achieve suitable network training.

14.
Biomedicines ; 9(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513763

RESUMEN

Hyperpolarized 13C nuclear magnetic resonance spectroscopy can characterize in vivo tissue metabolism, including preclinical models of cancer and inflammatory disease. Broad bandwidth radiofrequency excitation is often paired with free induction decay readout for spectral separation, but quantification of low-signal downstream metabolites using this method can be impeded by spectral peak overlap or when frequency separation of the detected peaks exceeds the excitation bandwidth. In this work, alternating frequency narrow bandwidth (250 Hz) slice-selective excitation was used for 13C spectroscopy at 7 T in a subcutaneous xenograft rat model of human pancreatic cancer (PSN1) to improve quantification while measuring the dynamics of injected hyperpolarized [1-13C]lactate and its metabolite [1-13C]pyruvate. This method does not require sophisticated pulse sequences or specialized radiofrequency and gradient pulses, but rather uses nominally spatially offset slices to produce alternating frequency excitation with simpler slice-selective radiofrequency pulses. Additionally, point-resolved spectroscopy was used to calibrate the 13C frequency from the thermal proton signal in the target region. This excitation scheme isolates the small [1-13C]pyruvate peak from the similar-magnitude tail of the much larger injected [1-13C]lactate peak, facilitates quantification of the [1-13C]pyruvate signal, simplifies data processing, and could be employed for other substrates and preclinical models.

15.
J Immunol ; 181(10): 7081-9, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18981128

RESUMEN

Dysregulation of professional APC has been postulated as a major mechanism underlying Ag-specific T cell hyporesponsiveness in patients with patent filarial infection. To address the nature of this dysregulation, dendritic cells (DC) and macrophages generated from elutriated monocytes were exposed to live microfilariae (mf), the parasite stage that circulates in blood and is responsible for most immune dysregulation in filarial infections. DC exposed to mf for 24-96 h showed a marked increase in cell death and caspase-positive cells compared with unexposed DC, whereas mf exposure did not induce apoptosis in macrophages. Interestingly, 48-h exposure of DC to mf induced mRNA expression of the proapoptotic gene TRAIL and both mRNA and protein expression of TNF-alpha. mAb to TRAIL-R2, TNF-R1, or TNF-alpha partially reversed mf-induced cell death in DC, as did knocking down the receptor for TRAIL-R2 using small interfering RNA. The mf also induced gene expression of BH3-interacting domain death agonist and protein expression of cytochrome c in DC; mf-induced cleavage of BH3-interacting domain death agonist could be shown to induce release of cytochrome c, leading to activation of caspase 9. Our data suggest that mf induce DC apoptosis in a TRAIL- and TNF-alpha-dependent fashion.


Asunto(s)
Apoptosis/inmunología , Células Dendríticas/inmunología , Filariasis/inmunología , Microfilarias/inmunología , Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/biosíntesis , Brugia Malayi/inmunología , Citocromos c/biosíntesis , Células Dendríticas/metabolismo , Citometría de Flujo , Expresión Génica , Regulación de la Expresión Génica , Humanos , Immunoblotting , Macrófagos/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
16.
J Magn Reson ; 312: 106686, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32006793

RESUMEN

Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the 'standard model' of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes.


Asunto(s)
Medios de Contraste/química , Pulmón/diagnóstico por imagen , Espectroscopía de Resonancia Magnética/métodos , Rubidio/química , Isótopos de Xenón/química , Simulación por Computador , Conjuntos de Datos como Asunto , Rayos Láser , Fotones , Sensibilidad y Especificidad
17.
Front Immunol ; 10: 874, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105698

RESUMEN

The goal of HIV therapeutic vaccination is to induce HIV-specific immune response able to control HIV replication. We previously reported that vaccination with ex vivo generated Dendritic Cells (DC) loaded with HIV-lipopeptides in HIV-infected patients (n = 19) on antiretroviral therapy (ART) was well-tolerated and immunogenic. Vaccine-elicited HIV-specific T cell responses were associated with improved control of viral replication following antiretroviral interruption (ATI from w24 to w48). We show an inverse relationship between HIV-specific responses (production of IL-2, IL-13, IL-21, IFN-g, CD4 polyfunctionality, i.e., production of at least two cytokines) and the peak of viral load during ATI. Here we have performed an integrative systems vaccinology analysis including: (i) post vaccination (w16) immune responses assessed by cytometry, cytokine secretion, and Interferon-γ ELISPOT assays; (ii) whole blood and cellular gene expression measured during vaccination; and (iii) viral parameters following ATI, with the objective to disentangle the relationships between these markers and to identify vaccine signatures. During vaccination, 69 gene expression modules out of 260 varied significantly including (by order of significance) modules related to inflammation (Chaussabel Modules M3.2, M4.13, M4.6, M5.7, M7.1, M4.2), plasma cells (M4.11) and T cells (M4.1, 4.15). Cellular immune responses were positively correlated to genes belonging to T cell functional modules (M4.1, M4.15) at w16 and negatively correlated to genes belonging to inflammation modules (M7.1, M5.7, M3.2, M4.13, M4.2). More specifically, we show that prolonged increased abundance of inflammatory gene pathways related to toll-like receptor signaling (especially TLR4) are associated with both lower vaccine immune responses and control of viral replication post ATI. Further comparison of DC vaccine gene signatures with previously reported non-HIV vaccine signatures, such as flu and pneumococcal vaccines, revealed common pathways across vaccines. Overall, these results show that too long duration and too high intensity of vaccine inflammatory responses hamper the magnitude of effector responses.


Asunto(s)
Vacunas contra el SIDA/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Transcriptoma , Vacunas contra el SIDA/administración & dosificación , Adulto , Células Sanguíneas/inmunología , Células Sanguíneas/metabolismo , Biología Computacional/métodos , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Antígenos VIH , Infecciones por VIH/prevención & control , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Masculino , Persona de Mediana Edad , Evaluación del Resultado de la Atención al Paciente , Texas , Vacunación , Carga Viral
18.
Mol Imaging Biol ; 20(6): 902-918, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30120644

RESUMEN

Since reaching the clinic, magnetic resonance imaging (MRI) has become an irreplaceable radiological tool because of the macroscopic information it provides across almost all organs and soft tissues within the human body, all without the need for ionising radiation. The sensitivity of MR, however, is too low to take full advantage of the rich chemical information contained in the MR signal. Hyperpolarisation techniques have recently emerged as methods to overcome the sensitivity limitations by enhancing the MR signal by many orders of magnitude compared to the thermal equilibrium, enabling a new class of metabolic and molecular X-nuclei based MR tracers capable of reporting on metabolic processes at the cellular level. These hyperpolarised (HP) tracers have the potential to elucidate the complex metabolic processes of many organs and pathologies, with studies so far focusing on the fields of oncology and cardiology. This review presents an overview of hyperpolarisation techniques that appear most promising for clinical use today, such as dissolution dynamic nuclear polarisation (d-DNP), parahydrogen-induced hyperpolarisation (PHIP), Brute force hyperpolarisation and spin-exchange optical pumping (SEOP), before discussing methods for tracer detection, emerging metabolic tracers and applications and progress in preclinical and clinical application.


Asunto(s)
Imagen por Resonancia Magnética , Metabolismo , Imagen Molecular , Técnicas Biosensibles , Humanos , Oxidación-Reducción
19.
Clin Vaccine Immunol ; 21(12): 1668-80, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25298110

RESUMEN

Despite the availability of annually formulated vaccines, influenza virus infection remains a worldwide public health burden. Therefore, it is important to develop preclinical challenge models that enable the evaluation of vaccine candidates while elucidating mechanisms of protection. Here, we report that naive rhesus macaques challenged with 2009 pandemic H1N1 (pH1N1) influenza virus do not develop observable clinical symptoms of disease but develop a subclinical biphasic fever on days 1 and 5 to 6 postchallenge. Whole blood microarray analysis further revealed that interferon activity was associated with fever. We then tested whether type I interferon activity in the blood is a correlate of vaccine efficacy. The animals immunized with candidate vaccines carrying hemagglutinin (HA) or nucleoprotein (NP) exhibited significantly reduced interferon activity on days 5 to 6 postchallenge. Supported by cellular and serological data, we conclude that blood interferon activity is a prominent marker that provides a convenient metric of influenza virus vaccine efficacy in the subclinical rhesus macaque model.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Humanos , Inmunización , Macaca mulatta , Vacunación
20.
J Am Med Inform Assoc ; 19(6): 1103-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22700869

RESUMEN

BACKGROUND: HIV-1-infected individuals with higher viral set points progress to AIDS more rapidly than those with lower set points. Predicting viral set point early following infection can contribute to our understanding of early control of HIV-1 replication, to predicting long-term clinical outcomes, and to the choice of optimal therapeutic regimens. METHODS: In a longitudinal study of 10 untreated HIV-1-infected patients, we used gene expression profiling of peripheral blood mononuclear cells to identify transcriptional networks for viral set point prediction. At each sampling time, a statistical analysis inferred the optimal transcriptional network that best predicted viral set point. We then assessed the accuracy of this transcriptional model by predicting viral set point in an independent cohort of 10 untreated HIV-1-infected patients from Malawi. RESULTS: The gene network inferred at time of enrollment predicted viral set point 24 weeks later in the independent Malawian cohort with an accuracy of 87.5%. As expected, the predictive accuracy of the networks inferred at later time points was even greater, exceeding 90% after week 4. The composition of the inferred networks was largely conserved between time points. The 12 genes comprising this dynamic signature of viral set point implicated the involvement of two major canonical pathways: interferon signaling (p<0.0003) and membrane fraction (p<0.02). A silico knockout study showed that HLA-DRB1 and C4BPA may contribute to restricting HIV-1 replication. CONCLUSIONS: Longitudinal gene expression profiling of peripheral blood mononuclear cells from patients with acute HIV-1 infection can be used to create transcriptional network models to early predict viral set point with a high degree of accuracy.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Infecciones por VIH/diagnóstico , VIH-1 , Análisis de Secuencia por Matrices de Oligonucleótidos , Carga Viral/genética , Simulación por Computador , Progresión de la Enfermedad , Técnicas de Inactivación de Genes , Humanos , Leucocitos Mononucleares , Estudios Longitudinales , Malaui , Valor Predictivo de las Pruebas , Pronóstico , ARN Viral , Análisis de Regresión , Estados Unidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda