Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
PLoS Biol ; 18(2): e3000610, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32108180

RESUMEN

Neo-sex chromosomes are found in many taxa, but the forces driving their emergence and spread are poorly understood. The female-specific neo-W chromosome of the African monarch (or queen) butterfly Danaus chrysippus presents an intriguing case study because it is restricted to a single 'contact zone' population, involves a putative colour patterning supergene, and co-occurs with infection by the male-killing endosymbiont Spiroplasma. We investigated the origin and evolution of this system using whole genome sequencing. We first identify the 'BC supergene', a broad region of suppressed recombination across nearly half a chromosome, which links two colour patterning loci. Association analysis suggests that the genes yellow and arrow in this region control the forewing colour pattern differences between D. chrysippus subspecies. We then show that the same chromosome has recently formed a neo-W that has spread through the contact zone within approximately 2,200 years. We also assembled the genome of the male-killing Spiroplasma, and find that it shows perfect genealogical congruence with the neo-W, suggesting that the neo-W has hitchhiked to high frequency as the male-killer has spread through the population. The complete absence of female crossing-over in the Lepidoptera causes whole-chromosome hitchhiking of a single neo-W haplotype, carrying a single allele of the BC supergene and dragging multiple non-synonymous mutations to high frequency. This has created a population of infected females that all carry the same recessive colour patterning allele, making the phenotypes of each successive generation highly dependent on uninfected male immigrants. Our findings show how hitchhiking can occur between the physically unlinked genomes of host and endosymbiont, with dramatic consequences.


Asunto(s)
Mariposas Diurnas/genética , Cromosomas de Insectos/genética , Cromosomas Sexuales/genética , Animales , Mariposas Diurnas/microbiología , Evolución Molecular , Femenino , Ligamiento Genético , Genoma/genética , Haplotipos , Masculino , Fenotipo , Spiroplasma/genética
2.
Biol Lett ; 18(6): 20210639, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35642381

RESUMEN

Warning coloration provides a textbook example of natural selection, but the frequent observation of polymorphism in aposematic species presents an evolutionary puzzle. We investigated biogeography and polymorphism of warning patterns in the widespread butterfly Danaus chrysippus using records from citizen science (n = 5467), museums (n = 8864) and fieldwork (n = 2586). We find that polymorphism in three traits controlled by known mendelian loci is extensive. Broad allele frequency clines, hundreds of kilometres wide, suggest a balance between long-range dispersal and predation of unfamiliar morphs. Mismatched clines for the white hindwing and forewing tip in East Africa are consistent with a previous finding that the black wingtip allele has spread recently in the region through hitchhiking with a heritable endosymbiont. Light/dark background coloration shows more extensive polymorphism. The darker genotype is more common in cooler regions, possibly reflecting a trade-off between thermoregulation and predator warning. Overall, our findings show how studying local adaptation at the global scale provides a more complete picture of the evolutionary forces involved.


Asunto(s)
Mariposas Diurnas , Pigmentación , Adaptación Biológica , Animales , Evolución Biológica , Mariposas Diurnas/genética , Ciencia Ciudadana , Frecuencia de los Genes , Fenotipo , Conducta Predatoria , Selección Genética
3.
Cytogenet Genome Res ; 153(1): 46-53, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29130975

RESUMEN

The number of sequenced lepidopteran genomes is increasing rapidly. However, the corresponding assemblies rarely represent whole chromosomes and generally also lack the highly repetitive W sex chromosome. Knowledge of the karyotypes can facilitate genome assembly and further our understanding of sex chromosome evolution in Lepidoptera. Here, we describe the karyotypes of the Glanville fritillary Melitaea cinxia (n = 31), the monarch Danaus plexippus (n = 30), and the African queen D. chrysippus (2n = 60 or 59, depending on the source population). We show by FISH that the telomeres are of the (TTAGG)n type, as found in most insects. M. cinxia and D. plexippus have "conventional" W chromosomes which are heterochromatic in meiotic and somatic cells. In D. chrysippus, the W is inconspicuous. Neither telomeres nor W chromosomes are represented in the published genomes of M. cinxia and D. plexippus. Representation analysis in sequenced female and male D. chrysippus genomes detected an evolutionarily old autosome-Z chromosome fusion in Danaus. Conserved synteny of whole chromosomes, so called "macro synteny", in Lepidoptera permitted us to identify the chromosomes involved in this fusion. An additional and more recent sex chromosome fusion was found in D. chrysippus by karyotype analysis and classical genetics. In a hybrid population between 2 subspecies, D. c. chrysippus and D. c. dorippus, the W chromosome was fused to an autosome that carries a wing colour locus. Thus, cytogenetics and the present state of genome data complement one another to reveal the evolutionary history of the species.


Asunto(s)
Mariposas Diurnas/genética , Genoma/genética , Cariotipo , Sintenía/genética , Telómero/genética , Animales , Mapeo Cromosómico , Cromosomas/clasificación , Cromosomas/genética , Femenino , Hibridación Fluorescente in Situ , Masculino
4.
Proc Biol Sci ; 283(1835)2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27440667

RESUMEN

Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and male-killing, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi show that the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus Our results demonstrate how a complex interplay between sex, colour pattern, male-killing, and a neo-W chromosome, has set up a genetic 'sink' that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a 'smoking gun' for an ongoing speciation process.


Asunto(s)
Mariposas Diurnas/genética , Especiación Genética , Pigmentación/genética , Cromosomas Sexuales/genética , Animales , Color , Femenino , Flujo Génico , Genética de Población , Kenia , Masculino , Fenotipo
5.
Ecol Evol ; 14(1): e10842, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235407

RESUMEN

Since the classic work of E.B. Ford, explanations for eyespot variation in the Meadow Brown butterfly have focused on the role of genetic polymorphism. The potential role of thermal plasticity in this classic example of natural selection has therefore been overlooked. Here, we use large daily field collections of butterflies from three sites, over multiple years, to examine whether field temperature is correlated with eyespot variation, using the same presence/absence scoring as Ford. We show that higher developmental temperature in the field leads to the disappearance of the spots visible while the butterfly is at rest, explaining the historical observation that hindwing spotting declines across the season. Strikingly, females developing at 11°C have a median of six spots and those developing at 15°C only have three. In contrast, the large forewing eyespot is always present and scales with forewing length. Furthermore, in contrast to the smaller spots, the size of the large forewing spot is best explained by calendar date (days since 1st March) rather than the temperature at pupation. As this large forewing spot is involved in startling predators and/or sexual selection, its constant presence is therefore likely required for defence, whereas the disappearance of the smaller spots over the season may help with female crypsis. We model annual total spot variation with phenological data from the UK and derive predictions as to how spot patterns will continue to change, predicting that female spotting will decrease year on year as our climate warms.

6.
Ecol Evol ; 14(2): e11024, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38414566

RESUMEN

Scoring the penetrance of heterozygotes in complex phenotypes, like colour pattern, is difficult and complicates the analysis of systems in which dominance is incomplete or evolving. The African Monarch (Danaus chrysippus) represents an example where colour pattern heterozygotes, formed in the contact zone between the different subspecies, show such intermediate dominance. Colour pattern in this aposematic butterfly is controlled by three loci A, B and C. The B and C loci are closely linked in a B/C supergene and significant interaction of B and C phenotypes is therefore expected via linkage alone. The A locus, however, is not linked to B/C and is found on a different chromosome. To study interactions between these loci we generated colour pattern heterozygotes by crossing males and females bearing different A and B/C genotypes, collected from different parts of Africa. We derived a novel scoring system for the expressivity of the heterozygotes and, as predicted, we found significant interactions between the genotypes of the closely linked B and C loci. Surprisingly, however, we also found highly significant interactions between C and the unlinked A locus, modifications that generally increased the resemblance of heterozygotes to homozygous ancestors. In contrast, we found no difference in the penetrance of any of the corresponding heterozygotes from crosses conducted either in allopatry or sympatry, in reciprocal crosses of males and females, or in the presence or absence of endosymbiont mediated male-killing or its associated neoW mediated sex-linkage of colour pattern. Together, this data supports the idea that the different colour morphs of the African Monarch meet transiently in the East African contact zone and that genetic modifiers act to mask inappropriate expression of colour patterns in the incorrect environments.

7.
Ecol Evol ; 13(4): e9956, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37021082

RESUMEN

In butterflies and moths, male-killing endosymbionts are transmitted from infected females via their eggs, and the male progeny then perish. This means that successful transmission of the parasite relies on the successful mating of the host. Paradoxically, at the population level, parasite transmission also reduces the number of adult males present in the final population for infected females to mate with. Here we investigate if successful female mating when males are rare is indeed a likely rate-limiting step in the transmission of male-killing Spiroplasma in the African Monarch, Danaus chrysippus. In Lepidoptera, successful pairings are hallmarked by the transfer of a sperm-containing spermatophore from the male to the female during copulation. Conveniently, this spermatophore remains detectable within the female upon dissection, and thus, spermatophore counts can be used to assess the frequency of successful mating in the field. We used such spermatophore counts to examine if altered sex ratios in the D. chrysippus do indeed affect female mating success. We examined two different field sites in East Africa where males were often rare. Surprisingly, mated females carried an average of 1.5 spermatophores each, regardless of male frequency, and importantly, only 10-20% remained unmated. This suggests that infected females will still be able to mate in the face of either Spiroplasma-mediated male killing and/or fluctuations in adult sex ratio over the wet-dry season cycle. These observations may begin to explain how the male-killing mollicute can still be successfully transmitted in a population where males are rare.

8.
Insects ; 10(9)2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505824

RESUMEN

Danaus chrysippus (L.), one of the world's commonest butterflies, has an extensive range throughout the Old-World tropics. In Africa it is divided into four geographical subspecies which overlap and hybridise freely in the East African Rift: Here alone a male-killing (MK) endosymbiont, Spiroplasma ixodetis, has invaded, causing female-biased populations to predominate. In ssp. chrysippus, inside the Rift only, an autosome carrying a colour locus has fused with the W chromosome to create a neo-W chromosome. A total of 40-100% of Rift females are neo-W and carry Spiroplasma, thus transmitting a linked, matrilineal neo-W, MK complex. As neo-W females have no sons, half the mother's genes are lost in each generation. Paradoxically, although neo-W females have no close male relatives and are thereby forced to outbreed, MK restricts gene flow between subspecies and may thus promote speciation. The neo-W chromosome originated in the Nairobi region around 2.2 k years ago and subsequently spread throughout the Rift contact zone in some 26 k generations, possibly assisted by not having any competing brothers. Our work on the neo-W chromosome, the spread of Spiroplasma and possible speciation is ongoing.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda