RESUMEN
Significant oxide ion conductivity has previously been reported for the Ba3M'Mâ³O8.5 family (M' = Nb5+, V5+; Mâ³ = Mo6+, W6+) of cation-deficient hexagonal perovskite derivatives. These systems exhibit considerable structural disorder and competitive occupation of two distinct oxygen positions (O3 site and O2 site), enabling two-dimensional (2D) ionic conductivity within the ab plane of the structure; higher occupation of the tetrahedral O3 site vs the octahedral O2 site is known to be a major factor that promotes oxide ion conductivity. Previous chemical doping studies have shown that substitution of small amounts of the M' or Mâ³ ions can result in significant changes to both the structure and ionic conductivity. Here, we report on the electrical and structural properties of the Ba3Nb1-xTaxMoO8.5 series (x = 0.00, 0.025, 0.050, 0.100). AC impedance measurements show that substitution of Nb5+ with Ta5+ leads to a significant increase in low-temperature (<500 °C) conductivity for x = 0.1. Analysis of neutron and X-ray diffraction (XRD) data confirms that there is a decrease in the M1O4/M1O6 ratio upon increasing x from 0 to 0.1 in Ba3Nb1-xTaxMoO8.5, which would usually coincide with a lowering in the conductivity. However, neutron diffraction results show that Ta doping causes an increase in the oxide ion conductivity as a result of longer M1-O3 bonds and increased polyhedral distortion.
RESUMEN
The hexagonal perovskite derivatives Ba3NbMoO8.5, Ba3NbWO8.5, and Ba3VWO8.5 have recently been reported to exhibit significant oxide ion conductivity. Here, we report the synthesis and crystal structure of the hexagonal perovskite derivative Ba3-xVMoO8.5-x. Rietveld refinement from neutron and X-ray diffraction data show that the cation vacancies are ordered on the M2 site, leading to a structure consisting of palmierite-like layers of M1Ox polyhedra separated by vacant octahedral layers. In contrast to other members of the Ba3M'Mâ³O8.5 family, Ba3-xVMoO8.5-x is not stoichiometric and both barium and oxygen vacancies are present. Although synthesized in air at elevated temperatures, Ba3-xVMoO8.5-x is unstable at lower temperatures, as illustrated by the formation of BaCO3 and BaMoO4 by heat treatment in air at 400 °C. This precludes measurement of the electrical properties. However, bond-valence site energy (BVSE) calculations strongly suggest that oxide ion conductivity is present in Ba3-xVMoO8.5-x.
RESUMEN
We present a structural and magnetic study of two batches of polycrystalline LiNi0.8Mn0.1Co0.1O2 (commonly known as Li NMC 811), a Ni-rich Li ion battery cathode material, using elemental analysis, X-ray and neutron diffraction, magnetometry, and polarized neutron scattering measurements. We find that the samples, labeled S1 and S2, have the composition Li1-xNi0.9+x-yMnyCo0.1O2, with x = 0.025(2), y = 0.120(2) for S1 and x = 0.002(2), y = 0.094(2) for S2, corresponding to different concentrations of magnetic ions and excess Ni2+ in the Li+ layers. Both samples show a peak in the zero-field-cooled (ZFC) dc susceptibility at 8.0(2) K, but the temperature at which the ZFC and FC (field-cooled) curves deviate is substantially different: 64(2) K for S1 and 122(2) K for S2. The ac susceptibility measurements show that the transition for S1 shifts with frequency whereas no such shift is observed for S2 within the resolution of our measurements. Our results demonstrate the sample dependence of magnetic properties in Li NMC 811, consistent with previous reports on the parent material LiNiO2. We further establish that a combination of experimental techniques is necessary to accurately determine the chemical composition of next-generation battery materials with multiple cations.
RESUMEN
Here we report a high-pressure investigation into the structural and magnetic properties of the double perovskite La2NiMnO6 using neutron scattering over a temperature range of 4.2-300 K at ambient pressure and over a temperature range of 120-1177 K up to a maximum pressure of 6.6 GPa. X-ray diffraction was also used up to a maximum pressure of 64 GPa, over a temperature range of 300-720 K. The sample was found to exist in a mixed rhombohedral/monoclinic symmetry at ambient conditions, the balance of which was found to be strongly temperature- and pressure-dependent. Alternating current magnetometry and X-ray absorption near-edge structure measurements were made at ambient pressure to characterize the sample, suggesting that the transition-metal sites exist in a mixed Ni3+/Mn3+ and Ni2+/Mn4+ state at ambient temperature and pressure. Analysis of the magnetic properties of the sample shows that the Curie temperature can be enhanced by â¼12 K with 2 GPa applied pressure, but it is highly stable at pressures beyond this. We report a pressure-volume-temperature equation of state for this material over this combined temperature and pressure range, with an ambient temperature bulk modulus of â¼179(8) GPa. The previously reported transition from monoclinic to rhombohedral symmetry upon heating to 700 K is seen to be encouraged with applied pressure, transforming fully by â¼1.5 GPa. Raman spectroscopy data were collected up to â¼8 GPa and show no clear changes or discontinuities over the reported phase transition to rhombohedral symmetry or any indication of further changes over the range considered. The ambient-pressure Grüneisen parameter γth was determined to be γth = 2.6 with a Debye temperature of 677 K. The individual modal parameters γj at ambient temperature were also determined from the high-pressure Raman data.
RESUMEN
The oxide ionic conductor Ba3W1.2Nb0.8O8.6 has been synthesized as part of an investigation into the new class of Ba3M'M''O8.5 (M' = W, Mo; M'' = Nb) oxide-ion conducting hexagonal perovskite derivatives. The substitution of W6+ for Nb5+ in Ba3W1+ xNb1- xO8.5+ x/2 leads to an increase in the oxygen content, which enhances the low-temperature ionic conductivity. However, at 400 °C, the ionic conductivity of Ba3W1.2Nb0.8O8.6 is still significantly lower than the molybdenum compound Ba3MoNbO8.5. Remarkably, at 600 °C the bulk oxide ionic conductivities of Ba3MoNbO8.5, Ba3WNbO8.5, and Ba3W1.2Nb0.8O8.6 are very similar (σb = 0.0022, 0.0017, and 0.0016 S cm-1, respectively). The variable-temperature neutron diffraction results reported here demonstrate that Ba3W1.2Nb0.8O8.6 undergoes a similar structural rearrangement to Ba3MoNbO8.5 above 300 °C, but the ratio of (W/Nb)O4 tetrahedra to (W/Nb)O6 octahedra rises at a faster rate upon heating between 300 and 600 °C. There is a clear relationship between the ionic conductivity of Ba3M'1+ xM''1- xO8.5+ x/2 (M' = W, Mo; M'' = Nb) phases and the number of tetrahedrally coordinated M' and M â³ cations present within the crystal structure.
RESUMEN
The half-Heuslers NbCoSn and NbCoSb have promising thermoelectric properties. Here, an investigation of the NbCo1+ySn1-zSbz (y = 0, 0.05; 0 ≤ z ≤ 1) solid-solution is presented. In addition, the p-type doping of NbCoSn using Ti and Zr substitution is investigated. Rietveld analysis reveals the gradual creation of Nb vacancies to compensate for the n-type doping caused by the substitution of Sb in NbCoSn. This leads to a similar valence electron count (â¼18.25) for the NbCo1+ySn1-zSbz samples (z > 0). Mass fluctuation disorder due to the Nb vacancies strongly decreases the lattice thermal conductivity from 10 W m-1 K-1 (z = 0) to 4.5 W m-1 K-1 (z = 0.5, 1). This is accompanied by a transition to degenerate semiconducting behaviour leading to large power factors, S2/ρ = 2.5-3 mW m-1 K-2 and figures of merit, ZT = 0.25-0.33 at 773 K. Ti and Zr can be used to achieve positive Seebeck values, e.g. S = +150 µV K-1 for 20% Zr at 773 K. However, the electrical resistivity, ρ323K = 27-35 mΩ cm, remains too large for these materials to be considered useful p-type materials.
RESUMEN
Lithium imide is a promising new catalyst for the production of hydrogen from ammonia. Its catalytic activity has been reported to be significantly enhanced through its use as a composite with various transition metal nitrides. In this work, two of these composite catalysts (with manganese nitride and iron nitride) were examined using in situ neutron and X-ray powder diffraction experiments in order to explore the bulk phases present during ammonia decomposition. Under such conditions, the iron composite was found to be a mixture of lithium imide and iron metal, while the manganese composite contained lithium imide and manganese nitride at low temperatures, and a mixture of lithium imide and two ternary lithium-manganese nitrides (LixMn2-xN and a small proportion of Li7MnN4) at higher temperatures. The results indicate that the bulk formation of a ternary nitride is not necessary for ammonia decomposition in lithium imide-transition metal catalyst systems.
RESUMEN
The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d5 cations above room temperature in the AFeO3 system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3-type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A3+/Fe3+ cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.
RESUMEN
Oxide ion conductors are important materials with a range of technological applications and are currently used as electrolytes for solid oxide fuel cells and solid oxide electrolyzer cells. Here we report the crystal structure and electrical properties of the hexagonal perovskite derivative Ba3MoNbO8.5. Ba3MoNbO8.5 crystallizes in a hybrid of the 9R hexagonal perovskite and palmierite structures. This is a new and so far unique crystal structure that contains a disordered distribution of (Mo/Nb)O6 octahedra and (Mo/Nb)O4 tetrahedra. Ba3MoNbO8.5 shows a wide stability range and exhibits predominantly oxide ion conduction over a pO2 range from 10-20 to 1 atm with a bulk conductivity of 2.2 × 10-3 S cm-1 at 600 °C. The high level of conductivity in a new structure family suggests that further study of hexagonal perovskite derivatives containing mixed tetrahedral and octahedral geometry could open up new horizons in the design of oxygen conducting electrolytes.
RESUMEN
Lithium-calcium imide is explored as a catalyst for the decomposition of ammonia. It shows the highest ammonia decomposition activity yet reported for a pure light metal amide or imide, comparable to lithium imide-amide at high temperature, with superior conversion observed at lower temperatures. Importantly, the post-reaction mass recovery of lithium-calcium imide is almost complete, indicating that it may be easier to contain than the other amide-imide catalysts reported to date. The basis of this improved recovery is that the catalyst is, at least partially, solid across the temperature range studied under ammonia flow. However, lithium-calcium imide itself is only stable at low and high temperatures under ammonia, with in situ powder diffraction showing the decomposition of the catalyst to lithium amide-imide and calcium imide at intermediate temperatures of 200-460 °C.
RESUMEN
Low-temperature (200 °C) hydrothermal synthesis of the ruthenium oxides Ca1.5 Ru2 O7 , SrRu2 O6 , and Ba2 Ru3 O9 (OH) is reported. Ca1.5 Ru2 O7 is a defective pyrochlore containing Ru(V/VI) ; SrRu2 O6 is a layered Ru(V) oxide with a PbSb2 O6 structure, whilst Ba2 Ru3 O9 (OH) has a previously unreported structure type with orthorhombic symmetry solved from synchrotron X-ray and neutron powder diffraction. SrRu2 O6 exhibits unusually high-temperature magnetic order, with antiferromagnetism persisting to at least 500â K, and refinement using room temperature neutron powder diffraction data provides the magnetic structure. All three ruthenates are metastable and readily collapse to mixtures of other oxides upon heating in air at temperatures around 300-500 °C, suggesting they would be difficult, if not impossible, to isolate under conventional high-temperature solid-state synthesis conditions.
RESUMEN
The solid solution Yb(x)Ca(1-x)C2 (0 ≤ x ≤ 1) was synthesized by reaction of the elements at 1323 K. The crystal structures within this solid solution, as elucidated from synchrotron powder diffraction data, depend on x and exhibit some interesting features that point to a structure dependent valence state of Yb. Compounds with x ≥ 0.75 crystallize in the tetragonal CaC2 type structure (I4/mmm, Z = 2) and obey Vegard's law; for x ≤ 0.75 the monoclinic ThC2 type structure (C2/c, Z = 4) is found, which coexists with the monoclinic CaC2-III type structure (C2/m, Z = 4) for x ≤ 0.25. The monoclinic modifications show a strong deviation from Vegard's law. Their unit cell volumes are remarkably larger than expected for a typical Vegard system. HERFD-XANES spectroscopic investigations reveal that different Yb valence states are responsible for the observed volume anomalies. While all tetragonal compounds contain mixed-valent Yb with â¼75% Yb(3+) (similar to pure YbC2), all monoclinic modifications contain exclusively Yb(2+). Therefore, Yb(x)Ca(1-x)C2 is a very rare example of a Yb containing compound showing a strong structure dependence of the Yb valence state. Moreover, temperature dependent synchrotron powder diffraction, neutron TOF powder diffraction, and HERFD-XANES spectroscopy experiments reveal significant Yb valence changes in some compounds of the Yb(x)Ca(1-x)C2 series that are induced by temperature dependent phase transitions. Transitions from the tetragonal CaC2 type structure to the monoclinic ThC2 or the cubic CaC2-IV type structure (Fm3m, Z = 4) are accompanied by drastic changes of the mean Yb valence from â¼2.70 to 2.0 in compounds with x = 0.75 and x = 0.91. Finally, the determination of lattice strain arising inside the modifications with ordered dumbbells (ThC2 and CaC2 type structures) by DSC measurements corroborated our results concerning the close relationship between crystal structure and Yb valence in the solid solution Yb(x)Ca(1-x)C2.
RESUMEN
Muon spin relaxation and powder neutron diffraction have been combined to study three lithium cobalt nitride battery materials. Neutron diffraction shows that these retain the P6/mmm space group of Li(3)N with Co located only on Li(1) sites. The lattice parameters vary smoothly with the degree of metal substitution, such that the [Li(2)N] layers expand while the layer separation contracts, as observed previously for similar series of Cu- and Ni-substituted materials. However, in contrast to the latter, the Li(3-x-y)Co(x)N phases exhibit Curie-Weiss paramagnetism and this prevents the use of nuclear magnetic resonance to measure Li(+) transport parameters. Therefore, muon spin relaxation has been employed here as an alternative technique to obtain quantitative information about Li(+) diffusion. Muon spin relaxation shows that Li(+) diffusion in Li(3-x-y)Co(x)N is anisotropic with transport confined to the [Li(2)N] plane at low temperature and exchange between Li(1) and Li(2) sites dominant at high temperature. By a comparison with previous studies some general trends have been established across a range of Cu-, Ni- and Co-substituted materials. For intra-layer diffusion E(a) decreases as metal substitution increases and the corresponding expansion of the layers results in a more open pathway for Li(+) diffusion. However, an optimal value of x is found with a ≈ 3.69 Å after which the concomitant contraction in layer spacing reduces the polarizability of the lattice framework.
RESUMEN
Recently nitrogen-hydrogen compounds have successfully been applied as co-catalysts for mild conditions ammonia synthesis. Ca2NH was shown to act as a H2 sink during reaction, with H atoms from its lattice being incorporated into the NH3(g) product. Thus the ionic transport and diffusion properties of the N-H co-catalyst are fundamentally important to understanding and developing such syntheses. Here we show hydride ion conduction in these materials. Two distinct calcium nitride-hydride Ca2NH phases, prepared via different synthetic paths are found to show dramatically different properties. One phase (ß) shows fast hydride ionic conduction properties (0.08 S/cm at 600 °C), on a par with the best binary ionic hydrides and 10 times higher than CaH2, whilst the other (α) is 100 times less conductive. An in situ combined analysis techniques reveals that the effective ß-phase conducts ions via a vacancy-mediated phenomenon in which the charge carrier concentration is dependent on the ion concentration in the secondary site and by extension the vacancy concentration in the main site.
RESUMEN
Chloride-based solid electrolytes are considered interesting candidates for catholytes in all-solid-state batteries due to their high electrochemical stability, which allows the use of high-voltage cathodes without protective coatings. Aliovalent Zr(iv) substitution is a widely applicable strategy to increase the ionic conductivity of Li3M(iii)Cl6 solid electrolytes. In this study, we investigate how Zr(iv) substitution affects the structure and ion conduction in Li3-x In1-x Zr x Cl6 (0 ≤ x ≤ 0.5). Rietveld refinement using both X-ray and neutron diffraction is used to make a structural model based on two sets of scattering contrasts. AC-impedance measurements and solid-state NMR relaxometry measurements at multiple Larmor frequencies are used to study the Li-ion dynamics. In this manner the diffusion mechanism and its correlation with the structure are explored and compared to previous studies, advancing the understanding of these complex and difficult to characterize materials. It is found that the diffusion in Li3InCl6 is most likely anisotropic considering the crystal structure and two distinct jump processes found by solid-state NMR. Zr-substitution improves ionic conductivity by tuning the charge carrier concentration, accompanied by small changes in the crystal structure which affect ion transport on short timescales, likely reducing the anisotropy.
RESUMEN
Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr2MnO2Cu1.5Ch2 (Ch = S, Se) into Cu-deintercalated phases where antifluorite type [Cu1.5Ch2]2.5- slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr2MnO2Ch2 slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures.
RESUMEN
This work investigates the acid sites in a commercial ZSM-5 zeolite catalyst by a combination of spectroscopic and physical methods. The Brønsted acid sites in such catalysts are associated with the aluminum substituted into the zeolite lattice, which may not be identical to the total aluminum content of the zeolite. Inelastic neutron scattering spectroscopy (INS) directly quantifies the concentrations of Brønsted acid protons, silanol groups, and hydroxyl groups associated with extra-framework aluminum species. The INS measurements show that â¼50% of the total aluminum content of this particular zeolite is extra framework, a conclusion supported by solid-state NMR and ammonia temperature-programmed desorption (TPD) measurements. Evidence for the presence of extra-framework aluminum oxide species is also seen in neutron powder diffraction data from proton- and deuterium-exchanged samples. The differences between results from the different analytical methods are discussed, and the novelty of direct proton counting by INS in this typical commercial catalyst is emphasized.
RESUMEN
In the first in situ neutron powder diffraction study of a supercritical hydrothermal synthesis, the crystallization of KTiOPO(4) (KTP) at 450 °C and 380 bar has been investigated. The time-resolved diffraction data suggest that the crystallization of KTP occurs by the reaction between dissolved K(+)(aq), PO(4)(3-)(aq), and [Ti(OH)(x)]((4-x)+)(aq) species.
RESUMEN
The valence state of Yb in YbC(2) was analyzed using high-energy-resolution fluorescence detection (HERFD) X-ray absorption near-edge structure (XANES) spectroscopy and time-of-flight neutron powder diffraction to clarify a controversy in the literature. The unit cell volume of YbC(2) suggests a mixed Yb valence, which was formerly determined to be 2.8 by magnetization measurements and paramagnetic neutron scattering techniques. However, the nature of the intermediate valence was not clearly established. Both homogeneous and heterogeneous mixed valences were assumed in different publications. The temperature-dependent behavior of the valence state was only predicted, albeit not explicitly studied. In this work, the valence state of Yb in YbC(2) is, therefore, investigated thoroughly by HERFD-XANES spectroscopy at low and high temperatures. Our measurements result in an average Yb valence of 2.81 that is temperature-independent from 15 to 1123 K. These findings are confirmed by neutron powder diffraction experiments, which reveal a constant C-C distance of 128.7(9) pm in a temperature range from 5 to 100 K. A significant temperature dependence of the Yb valence state in YbC(2) can, therefore, be excluded by our experimental results.
RESUMEN
New ternary and quaternary nitride halides, Ba(2)N(X,X') (X = F, Cl, Br; X' = Br, I), have been synthesized from the high temperature reactions of barium subnitride with the respective barium halides under an inert atmosphere. The former include the first fully characterized barium nitride halides for X other than F, and the latter are the first examples of barium nitride mixed halides. The variation in structure with composition has been investigated by powder X-ray and powder neutron diffraction techniques. The heavier ternary and quaternary nitride halides (X, X' = Cl, Br, I) crystallize in the hexagonal space group R3m, with the anti-α-NaFeO(2) structure. Ba(2)NF forms with both an anti-α-NaFeO(2) structure, in which N(3-) and F(-) are ordered and an anion-disordered simple rock salt structure. The hexagonal polymorph of Ba(2)NF is the only example to date of a nitride fluoride adopting this layered structure. Both the ternary and the quaternary compounds display very weak, temperature independent paramagnetism.