Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Genomics ; 19(1): 430, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29866053

RESUMEN

BACKGROUND: Feed intake and body weight gain are economically important inputs and outputs of beef production systems. The purpose of this study was to discover differentially expressed genes that will be robust for feed intake and gain across a large segment of the cattle industry. Transcriptomic studies often suffer from issues with reproducibility and cross-validation. One way to improve reproducibility is by integrating multiple datasets via meta-analysis. RNA sequencing (RNA-Seq) was performed on longissimus dorsi muscle from 80 steers (5 cohorts, each with 16 animals) selected from the outside fringe of a bivariate gain and feed intake distribution to understand the genes and pathways involved in feed efficiency. In each cohort, 16 steers were selected from one of four gain and feed intake phenotypes (n = 4 per phenotype) in a 2 × 2 factorial arrangement with gain and feed intake as main effect variables. Each cohort was analyzed as a single experiment using a generalized linear model and results from the 5 cohort analyses were combined in a meta-analysis to identify differentially expressed genes (DEG) across the cohorts. RESULTS: A total of 51 genes were differentially expressed for the main effect of gain, 109 genes for the intake main effect, and 11 genes for the gain x intake interaction (Pcorrected < 0.05). A jackknife sensitivity analysis showed that, in general, the meta-analysis produced robust DEGs for the two main effects and their interaction. Pathways identified from over-represented genes included mitochondrial energy production and oxidative stress pathways for the main effect of gain due to DEG including GPD1, NDUFA6, UQCRQ, ACTC1, and MGST3. For intake, metabolic pathways including amino acid biosynthesis and degradation were identified, and for the interaction analysis the pathways identified included GADD45, pyridoxal 5'phosphate salvage, and caveolar mediated endocytosis signaling. CONCLUSIONS: Variation among DEG identified by cohort suggests that environment and breed may play large roles in the expression of genes associated with feed efficiency in the muscle of beef cattle. Meta-analyses of transcriptome data from groups of animals over multiple cohorts may be necessary to elucidate the genetics contributing these types of biological phenotypes.


Asunto(s)
Bovinos/genética , Ingestión de Alimentos/genética , Hibridación Genética , Músculo Esquelético/metabolismo , Carne Roja , Estaciones del Año , Análisis de Secuencia de ARN , Alimentación Animal , Animales , Bovinos/crecimiento & desarrollo , Masculino
2.
BMC Genomics ; 15: 1004, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25410110

RESUMEN

BACKGROUND: The identification of genetic markers associated with complex traits that are expensive to record such as feed intake or feed efficiency would allow these traits to be included in selection programs. To identify large-effect QTL, we performed a series of genome-wide association studies and functional analyses using 50 K and 770 K SNP genotypes scored in 5,133 animals from 4 independent beef cattle populations (Cycle VII, Angus, Hereford and Simmental×Angus) with phenotypes for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake. RESULTS: A total of 5, 6, 11 and 10 significant QTL (defined as 1-Mb genome windows with Bonferroni-corrected P-value<0.05) were identified for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake, respectively. The identified QTL were population-specific and had little overlap across the 4 populations. The pleiotropic or closely linked QTL on BTA 7 at 23 Mb identified in the Angus population harbours a promising candidate gene ACSL6 (acyl-CoA synthetase long-chain family member 6), and was the largest effect QTL associated with dry matter intake and mid-test body weight explaining 10.39% and 14.25% of the additive genetic variance, respectively. Pleiotropic or closely linked QTL associated with average daily gain and mid-test body weight were detected on BTA 6 at 38 Mb and BTA 7 at 93 Mb confirming previous reports. No QTL for residual feed intake explained more than 2.5% of the additive genetic variance in any population. Marker-based estimates of heritability ranged from 0.21 to 0.49 for residual feed intake across the 4 populations. CONCLUSIONS: This GWAS study, which is the largest performed for feed efficiency and its component traits in beef cattle to date, identified several large-effect QTL that cumulatively explained a significant percentage of additive genetic variance within each population. Differences in the QTL identified among the different populations may be due to differences in power to detect QTL, environmental variation, or differences in the genetic architecture of trait variation among breeds. These results enhance our understanding of the biology of growth, feed intake and utilisation in beef cattle.


Asunto(s)
Alimentación Animal , Peso Corporal/genética , Bovinos/genética , Bovinos/metabolismo , Conducta Alimentaria , Carne , Sitios de Carácter Cuantitativo/genética , Animales , Femenino , Pleiotropía Genética , Genoma , Estudio de Asociación del Genoma Completo , Crecimiento y Desarrollo , Patrón de Herencia/genética , Masculino
3.
Adv Exp Med Biol ; 752: 77-96, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24170355

RESUMEN

Animal breeding and reproductive physiology have been closely related throughout the history of animal production science. Artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. Multiple ovulation embryo transfer (MOET) provides some ability to increase the genetic influence of the maternal line as well. The addition of genetic technologies to this paradigm allows for improved methods of selecting sires and dams carrying the best genes for production and yield of edible products and resistance to diseases and parasites. However, decreasing the number of influential parents within a population also increases the risk of propagating a recessive gene that could negatively impact the species (Reprod Domest Anim 44:792-796, 2009; BMC Genomics 11:337, 2010). Furthermore, antagonistic genotypic relationships between production traits and fertility (Anim Prod Sci 49:399-412, 2009; Anim Genet 43:442-446, 2012) suggest that care must be taken to ensure that increasing the frequency of genes with a positive influence on production does not negatively impact the fertility of the replacement females entering the herd.


Asunto(s)
Crianza de Animales Domésticos/métodos , Crianza de Animales Domésticos/tendencias , Cruzamiento/métodos , Transferencia de Embrión , Sitios de Carácter Cuantitativo/fisiología , Reproducción/fisiología , Animales , Transferencia de Embrión/métodos , Transferencia de Embrión/normas , Transferencia de Embrión/tendencias , Femenino , Abastecimiento de Alimentos/métodos , Abastecimiento de Alimentos/normas , Humanos , Masculino
4.
Int J Biometeorol ; 58(7): 1665-72, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24362770

RESUMEN

Cattle are reared in diverse environments and collecting phenotypic body temperature (BT) measurements to characterize BT variation across diverse environments is difficult and expensive. To better understand the genetic basis of BT regulation, a genome-wide association study was conducted utilizing crossbred steers and heifers totaling 239 animals of unknown pedigree and breed fraction. During predicted extreme heat and cold stress events, hourly tympanic and vaginal BT devices were placed in steers and heifers, respectively. Individuals were genotyped with the BovineSNP50K_v2 assay and data analyzed using Bayesian models for area under the curve (AUC), a measure of BT over time, using hourly BT observations summed across 5-days (AUC summer 5-day (AUCS5D) and AUC winter 5-day (AUCW5D)). Posterior heritability estimates were moderate to high and were estimated to be 0.68 and 0.21 for AUCS5D and AUCW5D, respectively. Moderately positive correlations between direct genomic values for AUCS5D and AUCW5D (0.40) were found, although a small percentage of the top 5% 1-Mb windows were in common. Different sets of genes were associated with BT during winter and summer, thus simultaneous selection for animals tolerant to both heat and cold appears possible.


Asunto(s)
Temperatura Corporal/genética , Bovinos/genética , Frío/efectos adversos , Calor/efectos adversos , Estrés Fisiológico/genética , Animales , Área Bajo la Curva , Bovinos/fisiología , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Estaciones del Año
5.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39041837

RESUMEN

With the rapid and significant cost reduction of next-generation sequencing, low-coverage whole-genome sequencing (lcWGS), followed by genotype imputation, is becoming a cost-effective alternative to single-nucleotide polymorphism (SNP)-array genotyping. The objectives of this study were 2-fold: (1) construct a haplotype reference panel for genotype imputation from lcWGS data in rainbow trout (Oncorhynchus mykiss); and (2) evaluate the concordance between imputed genotypes and SNP-array genotypes in 2 breeding populations. Medium-coverage (12×) whole-genome sequences were obtained from a total of 410 fish representing 5 breeding populations with various spawning dates. The short-read sequences were mapped to the rainbow trout reference genome, and genetic variants were identified using GATK. After data filtering, 20,434,612 biallelic SNPs were retained. The reference panel was phased with SHAPEIT5 and was used as a reference to impute genotypes from lcWGS data employing GLIMPSE2. A total of 90 fish from the Troutlodge November breeding population were sequenced with an average coverage of 1.3×, and these fish were also genotyped with the Axiom 57K rainbow trout SNP array. The concordance between array-based genotypes and imputed genotypes was 99.1%. After downsampling the coverage to 0.5×, 0.2×, and 0.1×, the concordance between array-based genotypes and imputed genotypes was 98.7, 97.8, and 96.7%, respectively. In the USDA odd-year breeding population, the concordance between array-based genotypes and imputed genotypes was 97.8% for 109 fish downsampled to 0.5× coverage. Therefore, the reference haplotype panel reported in this study can be used to accurately impute genotypes from lcWGS data in rainbow trout breeding populations.


Asunto(s)
Genotipo , Oncorhynchus mykiss , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Animales , Oncorhynchus mykiss/genética , Secuenciación Completa del Genoma/métodos , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma , Cruzamiento
6.
Genet Sel Evol ; 45: 30, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23953034

RESUMEN

BACKGROUND: Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. METHODS: Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. RESULTS: With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. CONCLUSIONS: Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training set, across- and within-breed trained molecular breeding values had similar accuracies. The benefit of adding data from other breeds to a within-breed training population is the ability to produce molecular breeding values that are more robust across breeds and these can be utilized until enough training data has been accumulated to allow for a within-breed training set.


Asunto(s)
Cruzamiento , Bovinos/genética , Variación Genética , Algoritmos , Animales , Genoma , Genómica , Genotipo , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
7.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37162065

RESUMEN

Most of the metabolizable energy that a cow uses during a production year is for maintenance; however, less is known about the heritability of maintenance compared to other traits that can be measured directly. Feed intake is a heritable trait in the mature cow and most of the feed consumed is used for maintenance. We hypothesized that maintenance energy was a heritable trait. Individual feed intake was measured for 84 or 85 d on 5 yr old pregnant cows (N = 887) from a pedigreed population of cattle that represent prominent breeds in the United States. Phenotypic mean (± SD) values were 654 ± 68 kg for cow body weight, 0.21 ± 0.24 kg/d for average daily gain, and 175 ± 17 d for midpoint fetal age. Dry matter intake averaged (± SD) 10.84 ± 1.41 kg/d. Metabolizable energy for maintenance was estimated by subtracting the metabolizable energy used for conceptus growth and tissue accretion from metabolizable energy intake. Metabolizable energy for maintenance averaged (± SD) 139 ± 18 ME kcal/d/BW kg0.75 and had a heritability of 0.31 ± 0.11. Cows have a moderate heritability for maintenance suggesting an opportunity for selection.


Feed is one of the greatest costs of beef production. Most of the feed used annually by a cow is to maintain her body. A study was conducted measuring individual feed intake of mature pregnant cows. We have determined that the amount of energy that a cow uses to maintain her body is heritable suggesting that cows can be selected for differences in the energy required to maintain their bodies.


Asunto(s)
Ingestión de Alimentos , Metabolismo Energético , Femenino , Embarazo , Bovinos/genética , Animales , Peso Corporal , Ingestión de Alimentos/genética , Ingestión de Energía , Fenotipo , Alimentación Animal/análisis , Lactancia , Dieta/veterinaria
8.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37585275

RESUMEN

A beef cattle population (n = 2,343) was used to assess the impact of variants identified from the imputed low-pass sequence (LPS) on the estimation of variance components and genetic parameters of birth weight (BWT) and post-weaning gain (PWG). Variants were selected based on functional impact and were partitioned into four groups (low, modifier, moderate, high) based on predicted functional impact and re-partitioned based on the consequence of mutation, such as missense and untranslated region variants, into six groups (G1-G6). Each subset was used to construct a genomic relationship matrix (GRM) for univariate animal models. Multiple analyses were conducted to compare the proportion of additive genetic variation explained by the different subsets individually and collectively, and these estimates were benchmarked against all LPS variants in a single GRM and array (e.g., GeneSeek Genomic Profiler 100K) genotypes. When all variants were included in a single GRM, heritability estimates for BWT and PWG were 0.43 ±â€…0.05 and 0.38 ±â€…0.05, respectively. Heritability estimates for BWT ranged from 0.10 to 0.42 dependent on which variant subsets were included. Similarly, estimates for PWG ranged from 0.05 to 0.38. Results showed that variants in the subsets modifier and G1 (untranslated region) yielded the highest heritability estimates and were similar to the inclusion of all variants, while estimates from GRM containing only variants in the categories High, G4 (non-coding transcript exon), and G6 (start and stop loss/gain) were the lowest. All variants combined provided similar heritability estimates to chip genotypes and provided minimal to no additional information when combined with chip data. This suggests that the chip single nucleotide polymorphisms and the variants from LPS predicted to be less consequential are in relatively high linkage disequilibrium with the underlying causal variants as a whole and sufficiently spread throughout the genome to capture larger proportions of additive genetic variation.


Animals from a crossbred beef cattle population were sequenced at low depth (i.e., 0.5×) and different subsets of selected imputed variants were investigated relative to their ability to explain variation in birth weight (BWT) and post-weaning gain (PWG). Variants were classified by both their predicted functional impact and by the consequence of the mutation and partitioned into subsets within these two criteria. When ~ 1 million variants were included in the same genomic relationship matrix, heritability estimates were similar to a 100k chip array. Heritability estimates for BWT ranged from 0.10 to 0.42 dependent on which variant subsets were included. Similarly, estimates for PWG ranged from 0.05 to 0.38. Differences in minor allele frequency were observed among subsets and these differences likely contributed to differences in heritability estimates. Results suggest that linkage disequilibrium between the variants categorized as being less consequential and underlying causal variants is high as indicated by the high percentage of variation explained.


Asunto(s)
Variación Genética , Lipopolisacáridos , Bovinos/genética , Animales , Fenotipo , Genotipo , Genoma , Polimorfismo de Nucleótido Simple
9.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36848325

RESUMEN

Successful development of replacement gilts determines their reproductive longevity and lifetime productivity. Selection for reproductive longevity is challenging due to low heritability and expression late in life. In pigs, age at puberty is the earliest known indicator for reproductive longevity and gilts that reach puberty earlier have a greater probability of producing more lifetime litters. Failure of gilts to reach puberty and display a pubertal estrus is a major reason for early removal of replacement gilts. To identify genomic sources of variation in age at puberty for improving genetic selection for early age at puberty and related traits, gilts (n = 4,986) from a multigeneration population representing commercially available maternal genetic lines were used for a genomic best linear unbiased prediction-based genome-wide association. Twenty-one genome-wide significant single nucleotide polymorphisms (SNP) located on Sus scrofa chromosomes (SSC) 1, 2, 9, and 14 were identified with additive effects ranging from -1.61 to 1.92 d (P < 0.0001 to 0.0671). Novel candidate genes and signaling pathways were identified for age at puberty. The locus on SSC9 (83.7 to 86.7 Mb) was characterized by long range linkage disequilibrium and harbors the AHR transcription factor gene. A second candidate gene on SSC2 (82.7 Mb), ANKRA2, is a corepressor for AHR, suggesting a possible involvement of AHR signaling in regulating pubertal onset in pigs. Putative functional SNP associated with age at puberty in the AHR and ANKRA2 genes were identified. Combined analysis of these SNP showed that an increase in the number of favorable alleles reduced pubertal age by 5.84 ± 1.65 d (P < 0.001). Candidate genes for age at puberty showed pleiotropic effects with other fertility functions such as gonadotropin secretion (FOXD1), follicular development (BMP4), pregnancy (LIF), and litter size (MEF2C). Several candidate genes and signaling pathways identified in this study play a physiological role in the hypothalamic-pituitary-gonadal axis and mechanisms permitting puberty onset. Variants located in or near these genes require further characterization to identify their impact on pubertal onset in gilts. Because age at puberty is an indicator of future reproductive success, these SNP are expected to improve genomic predictions for component traits of sow fertility and lifetime productivity expressed later in life.


Selecting for replacement gilts is challenging because sow reproductive traits are lowly heritable and expressed late in life. Age at puberty is the earliest indicator of future reproductive success of gilts. Genetic selection for early onset of puberty could be feasible with the availability of molecular genetic predictors for age at puberty. To identify genomic sources associated with variation in age at puberty in gilts, a large-scale genome-wide association study was conducted at the U.S Meat Animal Research Center, Clay Center, Nebraska. Novel genomic associations for age at puberty were identified. Several candidate genes identified for age at puberty are involved in signaling pathways that regulate ovarian functions and pubertal onset. Potential causative genetic variants for age at puberty were identified within the candidate genes. These novel SNP are important new markers for use in genomic selection of replacement gilts with early puberty and provide critical new insight into biological mechanisms important for pubertal development in gilts.


Asunto(s)
Estudio de Asociación del Genoma Completo , Maduración Sexual , Embarazo , Femenino , Animales , Porcinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Maduración Sexual/genética , Reproducción/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Transducción de Señal
10.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566464

RESUMEN

Mitochondrial DNA copy number (mtDNA CN) is heritable and easily obtained from low-pass sequencing (LPS). This study investigated the genetic correlation of mtDNA CN with growth and carcass traits in a multi-breed and crossbred beef cattle population. Blood, leucocyte, and semen samples were obtained from 2,371 animals and subjected to LPS that resulted in nuclear DNA (nuDNA) and mtDNA sequence reads. Mitochondrial DNA CN was estimated as the ratio of mtDNA to nuDNA coverages. Variant calling was performed from mtDNA, and 11 single nucleotide polymorphisms (SNP) were identified in the population. Samples were classified in taurine haplogroups. Haplogroup and mtDNA type were further classified based on the 11 segregating SNP. Growth and carcass traits were available for between 7,249 and 60,989 individuals. Associations of mtDNA CN, mtDNA haplogroups, mtDNA types, and mtDNA SNP with growth and carcass traits were estimated with univariate animal models, and genetic correlations were estimated with a bivariate animal model based on pedigree. Mitochondrial DNA CN tended (P-value ≤0.08) to be associated with birth weight and weaning weight. There was no association (P-value >0.10) between mtDNA SNP, haplogroups, or types with growth and carcass traits. Genetic correlation estimates of mtDNA CN were -0.30 ± 0.16 with birth weight, -0.31 ± 0.16 with weaning weight, -0.15 ± 0.14 with post-weaning gain, -0.11 ± 0.19 with average daily dry-matter intake, -0.04 ± 0.22 with average daily gain, -0.29 ± 0.13 with mature cow weight, -0.11 ± 0.13 with slaughter weight, -0.14 ± 0.13 with carcass weight, -0.07 ± 0.14 with carcass backfat, 0.14 ± 0.14 with carcass marbling, and -0.06 ± 0.14 with ribeye area. In conclusion, mtDNA CN was negatively correlated with most traits investigated, and the genetic correlation was stronger with growth traits than with carcass traits.


This study investigated mitochondrial DNA copy number (mtDNA CN) as a potential genetic indicator of growth and carcass traits in a composite beef cattle population. Mitochondrial DNA CN was previously shown to be under genetic control. The current study estimated the genetic relationship of mtDNA CN with growth and carcass traits. Blood, leucocyte, and semen samples were obtained from 2,371 animals and subjected to whole-genome sequencing at a low depth that resulted in nuclear DNA and mtDNA sequence reads. Mitochondrial DNA CN was estimated as the ratio of mtDNA to nuclear DNA coverages. Growth and carcass traits were available for between 7,249 and 60,989 individuals. Genetic parameters were estimated from an animal model based on pedigree. Genetic correlation estimates of mtDNA CN with growth and carcass traits were low to moderate and mostly negative. These indicate that selection for lower mtDNA would be associated with an increase in birth weight, weaning weight, post-weaning gain, average daily dry-matter intake, mature cow weight, slaughter weight, and carcass weight. Therefore, the by-product of whole-genome sequencing at a low depth could be used as an indicator trait for growth and carcass traits in genetic evaluations, but the genetic relationships are not likely strong enough to prioritize mtDNA ahead of routinely used indicator traits.


Asunto(s)
ADN Mitocondrial , Carne , Femenino , Bovinos/genética , Animales , ADN Mitocondrial/genética , Carne/análisis , Polimorfismo de Nucleótido Simple , Peso al Nacer , Variaciones en el Número de Copia de ADN/genética , Lipopolisacáridos , Fenotipo
11.
Theriogenology ; 195: 131-137, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332372

RESUMEN

Assisted reproductive technologies are used to propagate desirable genetics in a shortened timeframe. Selected females undergo ovarian stimulation with the use of follicle stimulating hormone (FSH) to increase embryo recovery for subsequent transfer programs. The FSH receptor (FSHR) c.337 C > G variant was reported to have a reduction in viable embryo numbers in an ovarian stimulation protocol. We, therefore, hypothesized that FSHR c.337 C > G would result in reduced in-vitro blastocyst development. Beef heifers were genotyped and selected based on the c.337 C > G FSHR genotype (CC, CG, GG; n = 15-16/genotype). Estrus was synchronized with a Select Synch protocol and heifers were slaughtered 5 days after induced ovulation. Anterior pituitaries, serum and reproductive tracts were collected at slaughter for analysis. Cumulus oocyte complexes (COCs) were collected and pooled within genotype for in-vitro fertilization (IVF) and subsequent blastocyst development. No differences were observed in carcass weights, anterior pituitary weights, serum progesterone, corpus lutea weight, surface follicle counts, histological follicle counts or follicular fluid estradiol concentration (P > 0.1) due to FSHR genotype. Differences were observed for ovulation rates in the GG FSHR genotype group (P < 0.01). However, cleavage and blastocyst rates were not affected due to FSHR genotype (P > 0.1), following standard IVF protocols. The FSHR variant does not influence antral follicle counts, estradiol production, or in-vitro blastocyst development in beef heifers. The GG FSHR genotype had an increased ovulation rate, which may indicate a greater potential for twinning, but research with a larger population is warranted to support this hypothesis.


Asunto(s)
Embrión de Mamíferos , Receptores de HFE , Bovinos/genética , Animales , Femenino , Receptores de HFE/genética , Reproducción , Polimorfismo Genético , Estradiol
12.
J Anim Sci ; 100(5)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511236

RESUMEN

Mitochondrial DNA copy number (mtDNA CN) has been shown to be highly heritable and associated with traits of interest in humans. However, studies are lacking in the literature for livestock species such as beef cattle. In this study, 2,371 individuals from a crossbred beef population comprising the Germplasm Evaluation program from the U.S. Meat Animal Research Center had samples of blood, leucocyte, or semen collected for low-pass sequencing (LPS) that resulted in both nuclear DNA (nuDNA) and mitochondrial DNA (mtDNA) sequence reads. Mitochondrial DNA CN was estimated based on the ratio of mtDNA to nuDNA coverages. Genetic parameters for mtDNA CN were estimated from an animal model based on a genomic relationship matrix (~87K SNP from the nuDNA). Different models were used to test the effects of tissue, sex, age at sample collection, heterosis, and breed composition. Maternal effects, assessed by fitting a maternal additive component and by fitting eleven SNP on the mtDNA, were also obtained. As previously reported, mtDNA haplotypes were used to classify individuals into Taurine haplogroups (T1, T2, T3/T4, and T5). Estimates of heritability when fitting fixed effects in addition to the intercept were moderate, ranging from 0.11 to 0.31 depending on the model. From a model ignoring contemporary group, semen samples had the lowest mtDNA CN, as expected, followed by blood and leucocyte samples (P ≤ 0.001). The effect of sex and the linear and quadratic effects of age were significant (P ≤ 0.02) depending on the model. When significant, females had greater mtDNA CN than males. The effects of heterosis and maternal heterosis were not significant (P ≥ 0.47). The estimates of maternal and mtDNA heritability were near zero (≤0.03). Most of the samples (98%) were classified as haplogroup T3. Variation was observed in the mtDNA within Taurine haplogroups, which enabled the identification of 24 haplotypes. These results suggest that mtDNA CN is under nuclear genetic control and would respond favorably to selection.


Mitochondrial DNA copy number (mtDNA CN) is related to mitochondrial function and thus may be indicative of energy efficiency. This study investigated the genetic and non-genetic factors associated with mtDNA CN in a beef cattle population of 2,371 animals using whole-genome sequencing at low depth. Blood, leucocyte, and semen samples were subjected to whole-genome sequencing, resulting in mtDNA and nuclear DNA to estimate mtDNA CN. Findings revealed that 11% to 31% of the variation in mtDNA CN is under genetic control. Non-genetic effects of tissue type, age, and sex were significantly associated with mtDNA CN. Semen samples had the lowest mtDNA CN, followed by blood and leucocyte samples. Younger and older ages were associated with a greater mtDNA CN than intermediate ages. Females had greater mtDNA CN than males. Heterosis and breed composition were not significantly associated with mtDNA CN. These results suggest that mtDNA CN is heritable and would respond favorably to genetic selection.


Asunto(s)
Bovinos , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Animales , Bovinos/genética , ADN Mitocondrial/genética , Femenino , Masculino , Mitocondrias/genética
13.
Animals (Basel) ; 12(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35883292

RESUMEN

Programs for sustainable beef production are established, but the specific role of beef cows in these systems is not well defined. This work characterized cows for two traits related to sustainability, cow weight (CW) and cumulative weight weaned (WtW). Cow weight indicates nutrient requirements and enteric methane emissions. Cumulative weight weaned reflects reproductive performance and avoidance of premature culling for characteristics related to animal health, welfare, and worker safety. Both traits were evaluated with random regression models with records from a crossbred population representing 18 breeds that conduct US national cattle evaluations. The genomic REML analyses included additive and dominance components, with relationships among 22,776 animals constructed from genotypes of 181,286 potentially functional variants imputed from a low-pass sequence. Projected to 8 years of age, the additive heritability estimate for CW was 0.57 and 0.11 for WtW. Dominance heritability was 0.02 for CW and 0.19 for WtW. Many variants with significant associations with CW were within previously described quantitative trait loci (QTL) for growth-related production, meat, and carcass traits. Significant additive WtW variants were covered by QTL for traits related to reproduction and structural soundness. All breeds contributed to groups of cows with high and low total genetic values (additive + dominance effects) for both traits. The high WtW cows and cows above the WtW mean but below the CW mean had larger heterosis values and fewer bases in runs of homozygosity. The high additive heritability of CW and dominance effects on WtW indicate that breeding to improve beef cow sustainability should involve selection to reduce CW and mate selection to maintain heterosis and reduce runs of homozygosity.

14.
J Anim Sci ; 100(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044465

RESUMEN

Understanding the genetic relationship between mature cow weight (MWT) and body condition score (BCS) is useful to implement selection programs focused on cow efficiency. The objectives of this study were to estimate genetic parameters, heterosis, and breed effects for MWT and BCS. In total, 25,035 and 24,522 overlapping records were available for MWT and BCS on 6,138 and 6,131 cows, respectively, from the Germplasm Evaluation program, a crossbred beef population at the U.S. Meat Animal Research Center. Pedigree was available for 48,013 individuals. Univariate animal models were used to estimate heritabilities for each trait by parity. Bivariate animal models were used to estimate genetic correlations between parities within a trait and between traits within parities. Bivariate repeatability animal models were used to estimate genetic correlations between traits across parities. Estimates of heritability for different parities ranged from 0.43 ±â€…0.05 to 0.55 ±â€…0.07 for MWT and from 0.12 ±â€…0.03 to 0.25 ±â€…0.04 for BCS and were lower with the repeatability model at 0.40 ±â€…0.02 and 0.11 ±â€…0.01 for MWT and BCS, respectively. Estimates of repeatability were high for MWT (0.67 ±â€…0.005) and low for BCS (0.22 ±â€…0.006). Estimates of genetic correlation for MWT and BCS between parities were, in general, high, especially between consecutive parities. Estimates of genetic correlation between MWT and BCS were positive and moderate, ranging from 0.32 ±â€…0.09 to 0.68 ±â€…0.14. The direct heterosis estimates were 21.56 ±â€…3.53 kg (P ≤ 0.001) for MWT and 0.095 ±â€…0.034 (P ≤ 0.001) for BCS. Ordered by decreasing MWT, the breeds ranked Brahman, Charolais, Angus, Simmental, Salers, Hereford, Santa Gertrudis, Chiangus, Brangus, Red Angus, Shorthorn, Maine-Anjou, Gelbvieh, Beefmaster, Limousin, and Braunvieh. Ordered by decreasing BCS, the breeds ranked Brahman, Red Angus, Charolais, Angus, Hereford, Brangus, Beefmaster, Chiangus, Salers, Simmental, Maine-Anjou, Limousin, Santa Gertrudis, Shorthorn, Gelbvieh, and Braunvieh. Estimates of breed differences for MWT were also adjusted for BCS (AMWT), and in general, AMWT depicted smaller differences between breeds with some degree of re-ranking (r = 0.59). These results suggest that MWT and BCS are at least moderately genetically correlated and that they would respond favorably to selection. Estimates of breed differences and heterotic effects could be used to parameterize multibreed genetic evaluations for indicators of cow maintenance energy requirements.


The current study estimated the genetic relationship between mature cow weight (MWT) and body condition score (BCS), heterosis, and breed effects for these traits in a crossbred beef population. In total, 25,035 and 24,522 overlapping records were available for MWT and BCS, respectively. Pedigree was available for 48,013 individuals. Heritability and genetic correlations were estimated within a trait between parities, between traits within parities, and between traits across parities. Estimates of heritability ranged from 0.40 ±â€…0.02 to 0.55 ±â€…0.07 for MWT and from 0.11 ±â€…0.01 to 0.25 ±â€…0.04 for BCS. Genetic correlations within a trait and between parities were, in general, high. Estimates of genetic correlation between MWT and BCS were positive and moderate, ranging from 0.32 ±â€…0.09 to 0.68 ±â€…0.14. Heterosis effects were 21.56 ±â€…3.53 kg for MWT and 0.095 ±â€…0.034 for BCS. For both traits, Brahman and Braunvieh were associated with the highest and lowest breed effects, respectively. These results suggest that MWT and BCS would respond favorably to selection and are moderately genetically correlated. Breed differences and heterotic effects could be used to parameterize multibreed genetic evaluations for indicators of cow maintenance energy requirements.


Asunto(s)
Vigor Híbrido , Carne , Animales , Peso Corporal/genética , Bovinos/genética , Femenino , Vigor Híbrido/genética , Paridad , Fenotipo , Embarazo
15.
BMC Genet ; 12: 103, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22168586

RESUMEN

BACKGROUND: In a previously reported genome-wide association study based on a high-density bovine SNP genotyping array, 8 SNP were nominally associated (P ≤ 0.003) with average daily gain (ADG) and 3 of these were also associated (P ≤ 0.002) with average daily feed intake (ADFI) in a population of crossbred beef cattle. The SNP were clustered in a 570 kb region around 38 Mb on the draft sequence of bovine chromosome 6 (BTA6), an interval containing several positional and functional candidate genes including the bovine LAP3, NCAPG, and LCORL genes. The goal of the present study was to develop and examine additional markers in this region to optimize the ability to distinguish favorable alleles, with potential to identify functional variation. RESULTS: Animals from the original study were genotyped for 47 SNP within or near the gene boundaries of the three candidate genes. Sixteen markers in the NCAPG-LCORL locus displayed significant association with both ADFI and ADG even after stringent correction for multiple testing (P ≤ 005). These markers were evaluated for their effects on meat and carcass traits. The alleles associated with higher ADFI and ADG were also associated with higher hot carcass weight (HCW) and ribeye area (REA), and lower adjusted fat thickness (AFT). A reduced set of markers was genotyped on a separate, crossbred population including genetic contributions from 14 beef cattle breeds. Two of the markers located within the LCORL gene locus remained significant for ADG (P ≤ 0.04). CONCLUSIONS: Several markers within the NCAPG-LCORL locus were significantly associated with feed intake and body weight gain phenotypes. These markers were also associated with HCW, REA and AFT suggesting that they are involved with lean growth and reduced fat deposition. Additionally, the two markers significant for ADG in the validation population of animals may be more robust for the prediction of ADG and possibly the correlated trait ADFI, across multiple breeds and populations of cattle.


Asunto(s)
Composición Corporal/genética , Bovinos/genética , Proteínas de Ciclo Celular/genética , Animales , Mapeo Cromosómico , Marcadores Genéticos , Carne , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Aumento de Peso/genética
16.
J Anim Sci ; 99(8)2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261131

RESUMEN

Cow mature weight (MWT) is heritable and affects the costs and efficiency of a breeding operation. Cow weight is also influenced by the environment, and the relationship between the size and profitability of a cow varies depending on production system. Producers, therefore, need tools to incorporate MWT in their selection of cattle breeds and herd replacements. The objective of this study was to estimate breed and heterotic effects for MWT using weight-age data on crossbred cows. Cow's MWT at 6 yr was predicted from the estimated parameter values-asymptotic weight and maturation constant (k)-from the fit of the Brody function to their individual data. Values were obtained for 5,156 crossbred cows from the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation Program using 108,957 weight records collected from approximately weaning up to 6 yr of age. The cows were produced from crosses among 18 beef breeds. A bivariate animal model was fitted to the MWT and k obtained for each cow. The fixed effects were birth year-season contemporary group and covariates of direct and maternal breed fractions, direct and maternal heterosis, and age at final weighing. The random effects were direct additive and residual. A maternal additive random effect was also fitted for k. In a separate analysis from that used to estimate breed effects and (co)variances, cow MWT was regressed on sire yearling weight (YWT) Expected Progeny Differences by its addition as a covariate to the animal model fitted for MWT. That regression coefficient was then used to adjust breed solutions for sire selection in the USMARC herd. Direct heterosis was 15.3 ± 2.6 kg for MWT and 0.000118 ± 0.000029 d-1 for k. Maternal heterosis was -5.7 ± 3.0 kg for MWT and 0.000130 ± 0.000035 d-1 for k. Direct additive heritabilities were 0.56 ± 0.03 for MWT and 0.23 ± 0.03 for k. The maternal additive heritability for k was 0.11 ± 0.02. The direct additive correlation between MWT and k was negligible (0.08 ± 0.09). Adjusted for sire sampling, Angus was heaviest at maturity of the breeds compared. Deviations from Angus ranged from -8.9 kg (Charolais) to -136.7 kg (Braunvieh). Ordered by decreasing MWT, the breeds ranked Angus, Charolais, Hereford, Brahman, Salers, Santa Gertrudis, Simmental, Maine Anjou, Limousin, Red Angus, Brangus, Chiangus, Shorthorn, Gelbvieh, Beefmaster, and Braunvieh. These breed effects for MWT can inform breeding programs where cow size is considered a key component of the overall profitability.


Asunto(s)
Enfermedades de los Bovinos , Vigor Híbrido , Animales , Peso al Nacer , Peso Corporal/genética , Bovinos/genética , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Femenino , Vigor Híbrido/genética , Destete
17.
Transl Anim Sci ; 5(1): txab009, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33659864

RESUMEN

One approach to reducing calving difficulty is to select heifers with higher breeding value for calving ease. Calving ease is often associated with lower birth weight and that may result in other possible effects on lifetime productivity. Females from experimental select and control calving ease lines within each of the seven populations were compared. Random samples of 720 heifers from lines selected for better calving ease breeding values and 190 heifers from control lines selected for average birth weights were followed through four parities. Select and control lines within the same population were selected to achieve similar yearling weight breeding values. Weights of sampled heifers in select lines were 2.6 kg (P < 0.01) lighter at birth but not different from control lines at weaning. Select lines had significantly shorter hip height, lighter mature weight, and greater calving success at second parity. Their calves were born significantly earlier with lighter weights and less assistance. Significant interactions with parity showed fewer calves assisted and greater calf survival to weaning as heifers but negligible differences with control lines in later parities. Steer progeny sampled from these dams in select lines (n = 204) were not different from steers in control lines (n = 91) for hot carcass weight but had significantly greater fat depth. Two production systems were compared considering the seven populations as replicates. The systems differed in selection history of females (select and control lines) and the use of bulls within their lines as young cows, but used the same bulls in both lines as older cows. Cows were culled after single unsuccessful breeding and kept for up to four parities. Select line cows tended (P ≤ 0.10) to wean more calves and stay in the herd longer. They were assisted significantly fewer times at calving and had greater calf weight gain to weaning when evaluated over their herd life. Mature weights were lighter in select lines, but marketable cow weight from the systems was nearly identical. Control lines did have more marketable young cow weight and select lines older cow weight. Weaned calf weight per heifer starting the system was significantly greater for the select heifer system due to greater survival of calves from heifers and greater calving success at second parity. No important unfavorable effects of genetic differences in calving ease were identified in this experiment.

18.
J Anim Sci ; 98(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31903482

RESUMEN

The cow herd consumes approximately 70% of the annual feed resources. To date, most genetic evaluations of feed intake in beef cattle have been made in growing animals and little information is available for mature cows. Genetic evaluations in mature cows have predominately been confined to lactating dairy cows and the relationship between feed intake as growing heifers and mature cows has not been addressed. It was the purpose of this study to estimate the heritability of feed intake when measured as growing heifers and mature cows and determine the genetic correlation between these measurements. Individual feed intake and BW gain were measured on 687 heifers and 622 5-yr-old cows. The heritability of average daily DMI (ADDMI) estimated in heifers was 0.84 ±â€…0.12 and 0.53 ±â€…0.12 in cows. The heritability of ADG estimated in heifers was 0.53 ±â€…0.12 and 0.34 ±â€…0.11 in cows. The genetic correlation between heifer and cow ADDMI was 0.84 ±â€…0.09. The genetic correlation between heifer and cow ADG was 0.73 ±â€…019. Heritability of residual feed intake in heifers was 0.25 ±â€…0.11 and 0.16 ±â€…0.10 in cows. Heritability for residual gain in heifers was 0.21 ±â€…0.11 and 0.14 ±â€…0.10 in cows. Feed intake and ADG are heritable and genetically correlated between heifers and cows. Selection for decreased feed intake and ADG in growing animals will probably have the same directional effects on mature cows.


Asunto(s)
Bovinos/fisiología , Ingestión de Alimentos/genética , Aumento de Peso/genética , Alimentación Animal , Animales , Peso Corporal , Cruzamiento , Bovinos/genética , Bovinos/crecimiento & desarrollo , Femenino , Lactancia/genética , Fenotipo
19.
Genes (Basel) ; 11(11)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167493

RESUMEN

Decreasing costs are making low coverage sequencing with imputation to a comprehensive reference panel an attractive alternative to obtain functional variant genotypes that can increase the accuracy of genomic prediction. To assess the potential of low-pass sequencing, genomic sequence of 77 steers sequenced to >10X coverage was downsampled to 1X and imputed to a reference of 946 cattle representing multiple Bos taurus and Bos indicus-influenced breeds. Genotypes for nearly 60 million variants detected in the reference were imputed from the downsampled sequence. The imputed genotypes strongly agreed with the SNP array genotypes (r¯=0.99) and the genotypes called from the transcript sequence (r¯=0.97). Effects of BovineSNP50 and GGP-F250 variants on birth weight, postweaning gain, and marbling were solved without the steers' phenotypes and genotypes, then applied to their genotypes, to predict the molecular breeding values (MBV). The steers' MBV were similar when using imputed and array genotypes. Replacing array variants with functional sequence variants might allow more robust MBV. Imputation from low coverage sequence offers a viable, low-cost approach to obtain functional variant genotypes that could improve genomic prediction.


Asunto(s)
Crianza de Animales Domésticos/métodos , Bovinos/genética , Análisis de Secuencia de ADN/métodos , Animales , Cruzamiento/métodos , Genómica/métodos , Genotipo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Carne Roja , Estados Unidos
20.
Gigascience ; 9(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191811

RESUMEN

BACKGROUND: Major advances in selection progress for cattle have been made following the introduction of genomic tools over the past 10-12 years. These tools depend upon the Bos taurus reference genome (UMD3.1.1), which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies. RESULTS: We present the new reference genome for cattle, ARS-UCD1.2, based on the same animal as the original to facilitate transfer and interpretation of results obtained from the earlier version, but applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly includes 2.7 Gb and is >250× more continuous than the original assembly, with contig N50 >25 Mb and L50 of 32. We also greatly expanded supporting RNA-based data for annotation that identifies 30,396 total genes (21,039 protein coding). The new reference assembly is accessible in annotated form for public use. CONCLUSIONS: We demonstrate that improved continuity of assembled sequence warrants the adoption of ARS-UCD1.2 as the new cattle reference genome and that increased assembly accuracy will benefit future research on this species.


Asunto(s)
Cruzamiento/normas , Bovinos/genética , Genoma , Genómica/normas , Polimorfismo Genético , Animales , Cruzamiento/métodos , Genómica/métodos , RNA-Seq/métodos , RNA-Seq/normas , Estándares de Referencia , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda