Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Langmuir ; 38(41): 12666-12673, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36194557

RESUMEN

Phase-selective organogelators that gel oils from oil/water mixtures are useful to remediate oil spills on water. We designed and synthesized polymer organogelators, poly(styrene-co-10-undecenoic acid) with five different 10-undecenoic acid contents that could be added as powders at room temperature to gel oils with different viscosities. The morphologies and mechanical strengths of the gels were investigated using field-emission electron microscopy and rheological measurements, respectively. The gels formed porous fibrillar structures and had high stiffness. Fourier transformm infrared (FTIR) spectroscopy studies of these gels showed that hydrogen bonding and van der Waals forces helped create three-dimensional networks. The straightforward synthesis procedure, room-temperature conditions, and easy powder delivery make poly(styrene-co-10-undecenoic acid) an attractive alternative to existing oil spill response methods.

2.
Macromol Rapid Commun ; 40(1): e1800644, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417463

RESUMEN

The generation of tailings as a by product of the bitumen extraction process is one of the largest environmental footprints of oil sands operations. Most of the tailings treatment technologies use polymer flocculants to induce solid-liquid separation. However, due to the complex composition of tailings, conventional flocculants cannot reach the same performance achieved in other wastewater treatments. Over the last couple of decades, the oil sands industry has used acrylamide-based flocculants to treat tailings, achieving major progress in process optimization and integration with mechanical operations, but they still could not reach the required land reclamation targets. Over the last 5 years, the group designed, synthesized, and tested several novel polymer flocculants tailored for oil sands tailings treatment. This feature article communicates recent developments in these innovative polymers. The article first provides a background on tailings generation and treatment, followed by the description of advanced polymer flocculants categorized according to their microstructures such as linear, branched, and graft. The other tailings remediation technologies and one of the initial works on modeling of tailings flocculation is discussed.


Asunto(s)
Aceites/química , Polímeros/síntesis química , Floculación , Polímeros/química
3.
ACS Omega ; 9(1): 1990-1999, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222588

RESUMEN

Developing thermally stable reverse osmosis membranes is a potential game-changer in high-temperature water treatment. In this work, the performance of three commercial reverse osmosis membranes was evaluated with a series of high-temperature filtrations. The membranes were tested with different filtration methodologies: long-term operation, cyclic tests, controlled stepwise temperature increment, and permeability tests. The morphological and physiochemical characterizations were performed to study the impact of high-temperature filtration on the membranes' chemical composition and morphological characteristics. An increase in the temperature deteriorated the membrane performance in terms of water flux and salt rejection. Flux decline at high temperatures was recognized as the primary concern for high-temperature filtrations, restricting the applications of commercial membranes for long-term operations. This research provides valuable insights for researchers aiming to thoroughly characterize reverse osmosis membranes at high temperatures.

4.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514409

RESUMEN

Despite being widely used in tailings treatment, polyacrylamide continues to face performance challenges. In this study, two commercial polyacrylamides with different molecular weights were used to flocculate iron ore tailings and their performance was compared with two polymers designed to treat oil sand tailings: poly(vinylbenzyl)trimethylammonium chloride and partially hydrolyzed poly(methyl acrylate) grafted onto ethylene-propylene-diene copolymer backbones. The polyacrylamide with the highest molecular weight performed better than the one with the lowest molecular weight, but its efficiency was still considerably lower than what would be desired for good solid-liquid separation. The new polymer flocculants performed better than the commercially available polyacrylamides but retained high amounts of water in the sediments. This comparison shows that polymers other than polyacrylamide may be used to treat iron ore tailings.

5.
RSC Adv ; 13(8): 5096-5106, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36762077

RESUMEN

Organic mixed ionic-electronic conductors (OMIECs), which transport both ionic and electronic charges, development are important for progressing bioelectronic and energy storage devices. The p-type OMIECs are extensively investigated and used in various applications, whereas the n-type ones lag far behind due to their moisture and air instability. Here, we report the synthesis of the novel n-type naphthalene diimide (NDI)-based small-molecule OMIECs for organic electrochemical transistors (OECTs). The electro-active NDI molecule with the linear ethylene glycol side chains is a promising candidate for n-type channel material to obtain accumulation mode OECTs. This NDI-based small-molecule OMIEC, gNDI-Br2, demonstrates ion permeability due to the attachment of the glycol side chains with optimized ionic-electronic conductions. OECT devices with gNDI-Br2 channel material displays excellent performance in water and ambient stability. OECTs fabricated with two different concentrations, 50 mg mL-1 and 100 mg mL-1 of gNDI-Br2 demonstrate a transconductance value of 344 ± 19.7 µS and 814 ± 124.2 µS with the mobility capacitance product (µC*) of 0.13 ± 0.03 F cm-1 V-1 s-1 and 0.23 ± 0.04 F cm-1 V-1 s-1, respectively. These results demonstrate the n-type OMIEC behaviour of the NDI-based small-molecule and its applicability as an OECT channel material.

6.
Chemosphere ; 286(Pt 2): 131611, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34333183

RESUMEN

Finding an efficient and economical method to remediate oil spills on water is a priority worldwide. In this article, we propose a solution to this problem using polystyrene magnetic nanocomposite blends composed of polystyrene chains grafted on the surface of silica coated on iron oxide nanoparticles and polystyrene. The hydrophobic and oleophilic magnetic polymer nanocomposite collected oil from the water surface quickly and efficiently. However, when the magnetic polymer nanocomposite was blended with polystyrene, the resulting material also absorbed oil efficiently from the water surface. The blending technique made it easier to prepare the absorbent and dramatically decreased its cost. These new absorbents absorbed oil up to 5 times their own weight in only 5 minutes. The excellent hydrophobicity, low density, and easy magnetic separation makes these new absorbents a promising alternative to recover oil from spilled in fresh and marine water.


Asunto(s)
Nanocompuestos , Contaminación por Petróleo , Fenómenos Magnéticos , Aceites , Poliestirenos
7.
ACS Appl Mater Interfaces ; 12(2): 2916-2925, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31841298

RESUMEN

Developing thermally stable polymer membranes for high-temperature water treatment is in high demand, as the recommended usage temperatures of most commercial membranes are lower than 50 °C. In this study, we synthesized novel thin film composite polyamide membranes by modifying the chemical structure of their selective layers. Triaminopyrimidine was used to synthesize a polyamide selective layer with high cross-linking density over a microporous poly(ether sulfone) support. The addition of triamiopyrimidine to the classic m-phenylenediamine/trimesoyl chloride combination remarkably improved the permeation of the membranes. All synthesized thin film composite membranes showed consistent permeate flux for 9 h of operation at 75 °C with only a slight reduction in salt rejection. This study provides a promising and reproducible methodology to develop thermally stable high-flux thin film composite membranes, opening up a new paradigm for high-temperature water treatment processes.

8.
ACS Appl Mater Interfaces ; 12(47): 53274-53285, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33170622

RESUMEN

Despite growing demands for high-temperature wastewater treatment, most available polymeric membranes are limited to mild operating temperatures (<50 °C) and become less efficient at high temperatures. Herein we show how to make thermally stable reverse osmosis thin-film nanocomposite (TFN) membranes by embedding nanodiamond (ND) particles. Polyamide composite layers containing different loadings of surface-modified ND particles were synthesized through interfacial polymerization. The reactive functional groups and the hydrophilic surface of the NDs intensified the interactions of the nanoparticles with the polymer matrix and increased the surface wettability of the TFN membranes. Contact angle measurement showed a maximum decrease from 88.4° for the pristine membrane to 58.3° for the TFN membrane fabricated with 400 ppm ND particles. The addition of ND particles and ethyl acetate created larger surface features on the polyamide surface of TFN membranes. The average roughness of the membranes increased from 108.4 nm for the pristine membrane to 177.5 nm for the TFN membrane prepared with highest ND concentration. The ND-modified TFN membranes showed a higher pure water flux (up to 76.5 LMH) than the pristine membrane (17 LMH) at ambient temperature at 220 psi and room temperature. The TFN membrane with the highest loading of ND particles overcame the trade-off relation between the water flux and NaCl rejection with 76.5 LMH and 97.3% when 2000 ppm of NaCl solution was filtered at 220 psi. Furthermore, with increasing ND concentration, the TFN membrane showed a lower flux decline at high temperatures over time. The TFN400 prepared with 400 ppm of m-phenylene diamine functionalized ND particles had a 13% flux decline over a 9 h filtration test at 75 °C. This research provides a promising path to the development of high-performance TFN membranes with enhanced thermal stability for the treatment of wastewaters at high temperatures.

9.
Chemosphere ; 236: 124352, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31325825

RESUMEN

Effective oil spill preparedness and response are crucial to ensure environmental protection and promote the responsible development of the petroleum industry. Hence, interest in developing new approaches and/or improving existing oil spill response measures has increased greatly in the past decade. Solidifiers are an attractive and underutilized option to mitigate the effects of oil spills, as they interact with oil to contain the spill, prevent it from spreading, and facilitate its removal from the environment. In this work, we have synthesized an inexpensive and easy-to-make natural-based sorbent, a subclass of solidifiers. Our amylopectin-graft-poly(methyl acrylate) (AP-g-PMA) sorbent is highly oleophilic and hydrophobic, and selectively solidifies diluted bitumen and conventional crude oil from biphasic mixtures of oil and water. The complete solidification of conventional crude oil and diluted bitumen by the AP-g-PMA sorbent occurs within 8 and 32 min, respectively, and even a low solidifier-to-oil ratio of 4% w/w is sufficient to enable complete recovery of diluted bitumen. This innovative natural-based polymeric sorbent may be applied as a key component of oil spill response procedures, especially for heavy oils. The AP-g-PMA sorbent combines the biodegradability and non-toxicity of the amylopectin with the hydrophobicity and oleophilicity of the synthetic polymer poly(methyl acrylate).


Asunto(s)
Acrilatos/química , Amilopectina/química , Biodegradación Ambiental , Contaminación por Petróleo/análisis , Petróleo/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Océanos y Mares , Yacimiento de Petróleo y Gas , Polímeros/química
10.
ACS Omega ; 4(6): 10834-10844, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460181

RESUMEN

Nanocomposites composed of polyacrylamide and nanoclay were synthesized via free-radical cross-linking polymerization and used to adsorb Co2+ and Ni2+ ions from water. The polyacrylamide (PAM)/sodium montmorillonite (Na-MMT) nanocomposites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy to confirm the interaction between montmorillonite and the polymer matrix. The effects of pH and heavy metal ion concentration on the adsorption capacity of PAM/Na-MMT were evaluated to determine suitable operating conditions for further experiments. Batch adsorption experimental data were fitted to Langmuir and Freundlich models, which provided information about the adsorption mechanism and the adsorbent surface. The highest Ni2+ removal yield was found to be 99.3% using the 2:1 (w/w) nanocomposite at pH 6 in 100 ppm of Ni2+ solution. The Co2+ removal yield was 98.7% at pH 6 in 60 ppm of Co2+ solution using the 4:1 (w/w) nanocomposite. These results were higher than those obtained by polyacrylamide and nanoclay under the same conditions (removal yield between 87.40 and 94.50%), indicating that PAM/Na-MMT nanocomposites remove heavy metal water pollutants more efficiently and can be used as a novel adsorbent for further industrial applications.

11.
Chemosphere ; 194: 422-431, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29227890

RESUMEN

This work investigates the effect of multifunctional poly (N-isopropyl acrylamide/acrylic acid/N-tert-butylacrylamide) [p(NIPAM-AA-NTBA)] ternary polymer on the sedimentation of kaolin clay - a major fraction of oil sands tailings. A series of linear, uncross-linked p(NIPAM), p(NIPAM/AA), and p(NIPAM/AA/NTBM) were synthesized as random copolymers, where all monomer units were randomly arranged along the polymer backbone and connected by covalent bonds. The ternary copolymer, used as a flocculant, exhibited thermo-sensitivity, anionic nature, and hydrophobic association due to NIPAM, AA, and NTBM, respectively. As the ternary polymer is thermosensitive, it undergoes extended to coil-like conformation, i.e. hydrophilic to hydrophobic transition, above its lower critical solution temperature (LCST). The comonomers NIPAM (above LCST) and NTBM help expel water out of sediments due to their hydrophobicity, while AA promotes charge neutralization of the kaolin clay particles. The effect of number average molecular weight, charge density, and concentration of NTBM on settling behavior of kaolin suspension was examined. Settling test at 50 °C resulted in significantly higher settling rates compared to that at room temperature. Further, the quality of water recovered in each experiment was tested in terms of its turbidity. These results indicate that this novel ternary polymer can be employed to enhance the recovery of water from oil sands tailings containing clays.


Asunto(s)
Acrilamidas/química , Resinas Acrílicas/química , Silicatos de Aluminio/química , Yacimiento de Petróleo y Gas , Polielectrolitos/química , Eliminación de Residuos Líquidos/métodos , Resinas Acrílicas/síntesis química , Arcilla , Desecación , Floculación , Interacciones Hidrofóbicas e Hidrofílicas , Polielectrolitos/síntesis química , Suspensiones , Temperatura
12.
Chemosphere ; 210: 156-165, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29990754

RESUMEN

A series of multifunctional terpolymers, poly(N-isopropyl acrylamide/2-(methacryloyloxy) ethyl trimethyl ammonium chloride/N-tert-butylacrylamide) [P(NIPAM-MATMAC-BAAM)], were designed to flocculate and dewater oil sands mature fine tailings (MFT). The hydrophobic BAAM comonomer helped in expelling water from the sediments, while the cationic MATMAC comonomer promoted the charge neutralization of negatively charged particles suspended in MFT. The chemical composition distributions of these terpolymers were designed based on the knowledge of the reactivity ratios of all comonomers, instead of by trial and error, as usually done for most polymer flocculants. The binary reactivity ratios of the comonomers were estimated by synthesizing the binary copolymers with various mole fractions of each comonomer in the feed and experimentally measuring the corresponding fraction of comonomer in the copolymers. Polymer reaction engineering tools were used to minimize compositional drift and guarantee the synthesis of terpolymers with narrow chemical composition distributions suitable for MFT dewatering. Focused beam reflectance measurement (FBRM) experiments showed that terpolymers promoted the formation of large MFT flocs (120 µm). The initial settling rate decreased with the increase in flocculant hydrophobicity, likely because the hydrophobic terpolymer segments did not take part in the bridging of the MFT particles. In contrast, the sediment dewaterability increased with the increase in terpolymer hydrophobicity. This study provides guidelines to design a polymer flocculant from first principles and demonstrates the potential of using hydrophobically modified cationic polymers to flocculate MFT effectively.


Asunto(s)
Floculación , Polímeros/química , Agua/química , Acrilamidas , Interacciones Hidrofóbicas e Hidrofílicas , Yacimiento de Petróleo y Gas
13.
Chemosphere ; 208: 263-272, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29879560

RESUMEN

Polymer-driven flocculation and dewatering of mature fine tailings (MFT) is critical to improve their consolidation. MFT flocculation and dewatering depends on the size of the suspended clay particles, and on the composition and properties of the liquid in which they are dispersed. The effect of water chemistry on the polymer-particle dynamics is nontrivial, particularly for non-spherical, polydisperse particles such as natural clays. In this study, we used a response surface methodology to systematically assess the impact of Na+ and Ca2+ concentration and anionic polyacrylamide dosage in the flocculation and dewatering of MFT. We observed a beneficial synergistic effect between Ca2+ concentration and polyacrylamide dosage, although excess of Ca2+ may reduce polyacrylamide activity. In addition, we investigated the impact of clay particle size on MFT flocculation. Polyacrylamide did not flocculate MFT fractions where the fine clay particles (<2 µm) represented most of the population. Good settling, however, was observed when fine silt particles (from 2 to 44 µm) were present, indicating that the presence and accumulation of larger/heavier particles on the polymer-induced flocs is crucial to form aggregates that readily settle under gravity. The insights gained from this study can contribute to more efficient use of flocculants, more effective use of cations, and better understanding of the impact of particles size in MFT flocculation.


Asunto(s)
Resinas Acrílicas/farmacología , Silicatos de Aluminio/química , Calcio/metabolismo , Interpretación Estadística de Datos , Polímeros/química , Sodio/metabolismo , Agua/química , Arcilla , Restauración y Remediación Ambiental , Floculación , Tamaño de la Partícula
14.
Glob Chall ; 2(3): 1700135, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-31565327

RESUMEN

Hydrophobically modified acrylamide copolymers dewater oil sands tailings more effectively than anionic polyacrylamide, but the root causes for this enhanced performance have not been investigated systematically. Polyacrylamide-poly(ethylene oxide methyl ether methacrylate) copolymers with different comonomer compositions, hydrophobic chain lengths, and molecular weights to map out these effects systematically are synthetized. Through a statistical design of experiments, it is found out that all three variables above significantly affected flocculation performance and that certain combinations achieve optimal results. The effect of centrifugation on the flocculation and dewatering performance of these polymers is also investigated.

15.
Chemosphere ; 194: 837-846, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29223426

RESUMEN

The need for new and/or improvement of existing oil spill remediation measures has increased substantially amidst growing public concern with the increased transportation of unconventional crudes, such as diluted bitumen products. Solidifiers may be a very good spill response measure to contain and mitigate the effects of oil discharge incidents, as these interact with the oil to limit hydrocarbon release into air and water, prevent it from adhering onto sediment and debris, and could allow for oil recovery and reuse. Solidifiers change the physical state of the spilled oil from liquid to a coherent mass by chemical interactions between the spilled oil and the solidifier. Currently, the use of solidifiers is limited to small spills near shorelines. To extend their use to large-scale spill containment operations, it is necessary to understand the mechanism of solidifier action and to establish consistent criteria for evaluation of their effectiveness. The research effort to date has been focused mainly on gelators and cross-linking agents, with particularly impressive advancements in the areas of phase-selective polymeric and small-molecule gelators. Substantial research efforts are needed to improve solidifier performance and integrate solidifiers as part of spill response procedures, particularly for acute oil spills involving unconventional petroleum products.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Contaminación por Petróleo/prevención & control , Geles/química , Contaminación por Petróleo/análisis , Polímeros/química
16.
ACS Appl Mater Interfaces ; 9(41): 36290-36300, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28945965

RESUMEN

We synthesized hydrolytically degradable cationic polymers by micellar radical polymerization of a short-chain polyester macromonomer, polycaprolactone choline iodide ester methacrylate (PCL2ChMA) with two polyester units, and used them to flocculate oil sands mature fine tailings (MFT). We evaluated the flocculation performance of the homopolymer and copolymers with 30 mol % acrylamide (AM) by measuring initial settling rate (ISR), supernatant turbidity, and capillary suction time (CST) of the sediments. Flocculants made with trimethylaminoethyl methacrylate chloride (TMAEMC), the monomer corresponding to PCLnChMA with n = 0, have improved performance over poly(PCL2ChMA) at equivalent loadings due to their higher charge density per gram of polymer. However, MFT sediments flocculated using the PCL2ChMA-based polymers are easier to dewater (up to an 85% reduction in CST) after accelerated hydrolytic degradation of the polyester side chains. This study demonstrates the potential of designing cationic polymers that effectively flocculate oil sands tailings ponds, and also further dewater the resulting solids through polymer degradation.

17.
Macromol Rapid Commun ; 30(4-5): 384-93, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21706614

RESUMEN

Polyolefins made with Ziegler-Natta catalysts have non-uniform distributions of molecular weight (MWD) and chemical composition (CCD). The MWD is usually measured by high-temperature gel permeation chromatography (GPC) and the CCD by either temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF). A mathematical model is needed to quantify the information provided by these analytical techniques and to relate it to the presence of multiple site types on Ziegler-Natta catalysts. We developed a robust computer algorithm to deconvolute the MWD and CCD of polyolefins simultaneously using Flory's most probable distribution and the cumulative CCD component of Stockmayer's distribution, which includes the soluble fraction commonly present in linear low-density polyethylene (LLDPE) resins and have applied this procedure for the first time to several industrial LLDPE resins. The deconvolution results are reproducible and consistent with theoretical expectations.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda