RESUMEN
DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.
Asunto(s)
COVID-19 , Adulto Joven , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudios Prospectivos , Metilación de ADN/genética , Procesamiento Proteico-PostraduccionalRESUMEN
BACKGROUND: The efficacy of public health measures to control the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been well studied in young adults. METHODS: We investigated SARS-CoV-2 infections among U.S. Marine Corps recruits who underwent a 2-week quarantine at home followed by a second supervised 2-week quarantine at a closed college campus that involved mask wearing, social distancing, and daily temperature and symptom monitoring. Study volunteers were tested for SARS-CoV-2 by means of quantitative polymerase-chain-reaction (qPCR) assay of nares swab specimens obtained between the time of arrival and the second day of supervised quarantine and on days 7 and 14. Recruits who did not volunteer for the study underwent qPCR testing only on day 14, at the end of the quarantine period. We performed phylogenetic analysis of viral genomes obtained from infected study volunteers to identify clusters and to assess the epidemiologic features of infections. RESULTS: A total of 1848 recruits volunteered to participate in the study; within 2 days after arrival on campus, 16 (0.9%) tested positive for SARS-CoV-2, 15 of whom were asymptomatic. An additional 35 participants (1.9%) tested positive on day 7 or on day 14. Five of the 51 participants (9.8%) who tested positive at any time had symptoms in the week before a positive qPCR test. Of the recruits who declined to participate in the study, 26 (1.7%) of the 1554 recruits with available qPCR results tested positive on day 14. No SARS-CoV-2 infections were identified through clinical qPCR testing performed as a result of daily symptom monitoring. Analysis of 36 SARS-CoV-2 genomes obtained from 32 participants revealed six transmission clusters among 18 participants. Epidemiologic analysis supported multiple local transmission events, including transmission between roommates and among recruits within the same platoon. CONCLUSIONS: Among Marine Corps recruits, approximately 2% who had previously had negative results for SARS-CoV-2 at the beginning of supervised quarantine, and less than 2% of recruits with unknown previous status, tested positive by day 14. Most recruits who tested positive were asymptomatic, and no infections were detected through daily symptom monitoring. Transmission clusters occurred within platoons. (Funded by the Defense Health Agency and others.).
Asunto(s)
Prueba de COVID-19 , COVID-19/transmisión , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Personal Militar , Cuarentena , SARS-CoV-2/aislamiento & purificación , Infecciones Asintomáticas , COVID-19/diagnóstico , COVID-19/epidemiología , Genoma Viral , Humanos , Masculino , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , SARS-CoV-2/genética , South Carolina/epidemiología , Secuenciación Completa del Genoma , Adulto JovenRESUMEN
In a study of US Marine recruits, seroprevalence of severe acute respiratory syndrome coronavirus 2 IgG was 9.0%. Hispanic and non-Hispanic Black participants and participants from states affected earlier in the pandemic had higher seropositivity rates. These results suggest the need for targeted public health strategies among young adults at increased risk for infection.
Asunto(s)
COVID-19 , Salud Militar , Personal Militar/estadística & datos numéricos , Selección de Personal , SARS-CoV-2 , Factores de Edad , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/prevención & control , Prueba Serológica para COVID-19/métodos , Prueba Serológica para COVID-19/estadística & datos numéricos , Estudios Transversales , Demografía , Femenino , Humanos , Masculino , Salud Militar/etnología , Salud Militar/estadística & datos numéricos , Servicios de Salud Militares , Selección de Personal/métodos , Selección de Personal/estadística & datos numéricos , Cuarentena , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Estudios Seroepidemiológicos , Estados Unidos/epidemiología , Adulto JovenRESUMEN
In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 µg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.
Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/biosíntesis , Gripe Humana/prevención & control , Pandemias/prevención & control , Animales , Antígenos Virales/biosíntesis , Antígenos Virales/inmunología , Composición de Medicamentos/métodos , Composición de Medicamentos/estadística & datos numéricos , Industria Farmacéutica/normas , Femenino , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/aislamiento & purificación , Gripe Humana/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Vacunas de Productos Inactivados/biosíntesis , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/aislamiento & purificaciónRESUMEN
The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions.
Asunto(s)
Artritis/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/fisiología , Citidina Desaminasa/inmunología , Proteínas/inmunología , Replicación Viral/inmunología , Adulto , Animales , Artritis/patología , Artritis/virología , Fiebre Chikungunya/patología , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Femenino , Fiebre/inmunología , Fiebre/patología , Fiebre/virología , Estudios de Seguimiento , Humanos , Interleucina-1beta/inmunología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/inmunologíaRESUMEN
Rationale: Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with Streptococcus pneumoniae (Spn), although a prerequisite of infection, is the main source of exposure and immunological boosting in children and adults. However, our knowledge of how nasal colonization impacts on the lung cells, especially on the predominant alveolar macrophage (AM) population, is limited.Objectives: Using a controlled human infection model to achieve nasal colonization with 6B serotype, we investigated the effect of Spn colonization on lung cells.Methods: We collected BAL from healthy pneumococcal-challenged participants aged 18-49 years. Confocal microscopy and molecular and classical microbiology were used to investigate microaspiration and pneumococcal presence in the lower airways. AM opsonophagocytic capacity was assessed by functional assays in vitro, whereas flow cytometry and transcriptomic analysis were used to assess further changes on the lung cellular populations.Measurements and Main Results: AMs from Spn-colonized individuals exhibited increased opsonophagocytosis to pneumococcus (11.4% median increase) for approximately 3 months after experimental pneumococcal colonization. AMs also had increased responses against other bacterial pathogens. Pneumococcal DNA detected in the BAL samples of Spn-colonized individuals were positively correlated with nasal pneumococcal density (r = 0.71; P = 0.029). Similarly, AM-heightened opsonophagocytic capacity was correlated with nasopharyngeal pneumococcal density (r = 0.61, P = 0.025).Conclusions: Our findings demonstrate that nasal colonization with pneumococcus and microaspiration prime AMs, leading to brisker responsiveness to both pneumococcus and unrelated bacterial pathogens. The relative abundance of AMs in the alveolar spaces, alongside their potential for nonspecific protection, render them an attractive target for novel vaccines.
Asunto(s)
Macrófagos Alveolares/inmunología , Nasofaringe/microbiología , Nariz/microbiología , Streptococcus pneumoniae/aislamiento & purificación , Adolescente , Adulto , Bacterias/inmunología , Humanos , Persona de Mediana Edad , Aspiración Respiratoria , Adulto JovenRESUMEN
During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.
Asunto(s)
Antígenos CD28 , Factor 1 de Transcripción de Linfocitos T , Factor 1 de Transcripción de Linfocitos T/genética , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos , Diferenciación Celular , Factores de TranscripciónRESUMEN
Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from subjects with bloodstream infection and uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus infections. Although differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-susceptible S. aureus infections.
RESUMEN
Despite no apparent defects in T cell priming and recruitment to tumors, a large subset of T cell rich tumors fail to respond to immune checkpoint blockade (ICB). We leveraged a neoadjuvant anti-PD-1 trial in patients with hepatocellular carcinoma (HCC), as well as additional samples collected from patients treated off-label, to explore correlates of response to ICB within T cell-rich tumors. We show that ICB response correlated with the clonal expansion of intratumoral CXCL13+CH25H+IL-21+PD-1+CD4+ T helper cells ("CXCL13+ TH") and Granzyme K+ PD-1+ effector-like CD8+ T cells, whereas terminally exhausted CD39hiTOXhiPD-1hiCD8+ T cells dominated in nonresponders. CD4+ and CD8+ T cell clones that expanded post-treatment were found in pretreatment biopsies. Notably, PD-1+TCF-1+ (Progenitor-exhausted) CD8+ T cells shared clones mainly with effector-like cells in responders or terminally exhausted cells in nonresponders, suggesting that local CD8+ T cell differentiation occurs upon ICB. We found that these Progenitor CD8+ T cells interact with CXCL13+ TH within cellular triads around dendritic cells enriched in maturation and regulatory molecules, or "mregDC". These results suggest that discrete intratumoral niches that include mregDC and CXCL13+ TH control the differentiation of tumor-specific Progenitor exhasuted CD8+ T cells following ICB.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Linfocitos T CD8-positivos , Neoplasias Hepáticas/patología , Receptor de Muerte Celular Programada 1 , Linfocitos T Colaboradores-Inductores , Diferenciación Celular , Células Dendríticas/patologíaRESUMEN
Monocyte exposure to tumor cells induces a transient state in which these cells are refractory to further exposure to cancer. This phenomenon, termed "tumor tolerance", is characterized by a decreased production of proinflammatory cytokines in response to tumors. In the past, we found that this effect comprises IRAK-M up regulation and TLR4 and CD44 activation. Herein we have established a human model of tumor tolerance and have observed a marked down-regulation of MHCII molecules as well as the MHCII master regulator, CIITA, in monocytes/macrophages. These cells combine an impaired capability for antigen presentation with potent phagocytic activity and exhibit an M2-like phenotype. In addition circulating monocytes isolated from Chronic Lymphocytic Leukemia patients exhibited the same profile as tumor tolerant cells after tumor ex vivo exposition.
Asunto(s)
Presentación de Antígeno , Tolerancia Inmunológica , Modelos Biológicos , Monocitos/inmunología , Neoplasias/inmunología , Fagocitosis , Células HeLa , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Leucemia Linfocítica Crónica de Células B/inmunología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Proteínas Nucleares/inmunología , Transactivadores/inmunologíaRESUMEN
Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-ß, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.
Asunto(s)
COVID-19 , Factores de Crecimiento de Fibroblastos , Humanos , Interleucina-17 , Metaloproteinasa 10 de la Matriz , Proteómica , SARS-CoV-2RESUMEN
We investigated the temporal profile of multiple components of the serological response after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in a cohort of 67 previously SARS-CoV-2 naive young adults, up to 8.5 months after infection. We found a significant decrease of spike IgG and neutralization antibody titers from early (11 to 56 days) to late (4 to 8.5 months) time points postinfection. Over the study period, S1-specific IgG levels declined significantly faster than that of the S2-specific IgG. Further, serum antibodies from PCR-confirmed participants cross-recognized S2, but not S1, of the betacoronaviruses HKU1 and OC43, suggesting a greater degree of cross-reactivity of S2 among betacoronaviruses. Antibody-Dependent Natural Killer cell Activation (ADNKA) was detected at the early time point but significantly decreased at the late time point. Induction of serum Antibody-Dependent Monocyte Phagocytosis (ADMP) was detected in all the infected participants, and its levels remained stable over time. Additionally, a reduced percentage of participants had detectable neutralizing activity against the Beta (50%), Gamma (61 to 67%), and Delta (90 to 94%) variants, both early and late postinfection, compared to the ancestral strain (100%). Antibody binding to S1 and RBD of Beta, Gamma, Delta (1.7 to 2.3-fold decrease), and Omicron (10 to 16-fold decrease) variants was also significantly reduced compared to the ancestral SARS-CoV-2 strain. Overall, we found variable temporal profiles of specific components and functionality of the serological response to SARS-CoV-2 in young adults, which is characterized by lasting, but decreased, neutralizing activity and antibody binding to S1, stable ADMP activity, and relatively stable S2-specific IgG levels. IMPORTANCE Adaptive immunity mediated by antibodies is important for controlling SARS-CoV-2 infection. While vaccines against COVID-19 are currently widely distributed, a high proportion of the global population is still unvaccinated. Therefore, understanding the dynamics and maintenance of the naive humoral immune response to SARS-CoV-2 is of great importance. In addition, long-term responses after asymptomatic infection are not well-characterized, given the challenges in identifying such cases. Here, we investigated the longitudinal humoral profile in a well-characterized cohort of young adults with documented asymptomatic or mildly symptomatic SARS-CoV-2 infection. By analyzing samples collected preinfection, early after infection and during late convalescence, we found that, while neutralizing activity decreased over time, high levels of serum S2 IgG and Antibody-Dependent Monocyte Phagocytosis (ADMP) activity were maintained up to 8.5 months after infection. This suggests that a subset of antibodies with specific functions could contribute to long-term protection against SARS-CoV-2 in convalescent unvaccinated individuals.
Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto Joven , Humanos , Vacunas contra la COVID-19 , Monocitos , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper's transparent peer review process is included in the supplemental information.
Asunto(s)
COVID-19 , Inmunidad Innata , Caracteres Sexuales , Femenino , Humanos , Masculino , Adulto Joven , COVID-19/inmunología , Interferones , Proteómica , SARS-CoV-2RESUMEN
Monocyte exposure to LPS induces a transient state in which these cells are refractory to further endotoxin stimulation. This phenomenon, termed endotoxin tolerance (ET), is characterized by a decreased production of cytokines in response to the proinflammatory stimulus. We have established a robust model of ET and have determined the time frame and features of LPS unresponsiveness in cultured human monocytes. A large number of genes transcribed in tolerant monocytes were classified as either "tolerizable" or "nontolerizable" depending on their expression levels during the ET phase. Tolerant monocytes exhibit rapid IL-1R-associated kinase-M (IRAK-M) overexpression, high levels of triggering receptor expressed on myeloid cells-1 (TREM-1) and CD64, and a marked down-regulation of MHC molecules and NF-kappaB2. These cells combine potent phagocytic activity with impaired capability for Ag presentation. We also show that circulating monocytes isolated from cystic fibrosis patients share all the determinants that characterize cells locked in an ET state. These findings identify a new mechanism that contributes to impaired inflammation in cystic fibrosis patients despite a high frequency of infections. Our results indicate that a tolerant phenotype interferes with timing, efficiency, and outcome of the innate immune responses against bacterial infections.
Asunto(s)
Presentación de Antígeno/inmunología , Fibrosis Quística/inmunología , Tolerancia Inmunológica , Lipopolisacáridos/inmunología , Monocitos/inmunología , Fagocitosis/inmunología , Adulto , Fibrosis Quística/fisiopatología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Expresión Génica , Humanos , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Interleucina-6/biosíntesis , Interleucina-6/inmunología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
Colonization of the upper respiratory tract with Streptococcus pneumoniae is the precursor of pneumococcal pneumonia and invasive disease. Following exposure, however, it is unclear which human immune mechanisms determine whether a pathogen will colonize. We used a human challenge model to investigate host-pathogen interactions in the first hours and days following intranasal exposure to Streptococcus pneumoniae Using a novel home sampling method, we measured early immune responses and bacterial density dynamics in the nose and saliva after volunteers were experimentally exposed to pneumococcus. Here, we show that nasal colonization can take up to 24 h to become established. Also, the following two distinct bacterial clearance profiles were associated with protection: nasal clearers with immediate clearance of bacteria in the nose by the activity of pre-existent mucosal neutrophils and saliva clearers with detectable pneumococcus in saliva at 1 h post challenge and delayed clearance mediated by an inflammatory response and increased neutrophil activity 24 h post bacterial encounter. This study describes, for the first time, how colonization with a bacterium is established in humans, signifying that the correlates of protection against pneumococcal colonization, which can be used to inform design and testing of novel vaccine candidates, could be valid for subsets of protected individuals.IMPORTANCE Occurrence of lower respiratory tract infections requires prior colonization of the upper respiratory tract with a pathogen. Most bacterial infection and colonization studies have been performed in murine and in vitro models due to the current invasive sampling methodology of the upper respiratory tract, both of which poorly reflect the complexity of host-pathogen interactions in the human nose. Self-collecting saliva and nasal lining fluid at home is a fast, low-cost, noninvasive, high-frequency sampling platform for continuous monitoring of bacterial encounter at defined time points relative to exposure. Our study demonstrates for the first time that, in humans, there are distinct profiles of pneumococcal colonization kinetics, distinguished by speed of appearance in saliva, local phagocytic function, and acute mucosal inflammatory responses, which may either recruit or activate neutrophils. These data are important for the design and testing of novel vaccine candidates.
Asunto(s)
Infecciones Neumocócicas/microbiología , Sistema Respiratorio/microbiología , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/inmunología , Adolescente , Adulto , Animales , Citocinas , Interacciones Huésped-Patógeno , Humanos , Cinética , Ratones , Persona de Mediana Edad , Neutrófilos , Nariz/microbiología , Vacunas Neumococicas/inmunología , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/microbiología , Sistema Respiratorio/inmunología , Saliva/microbiología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación , Adulto JovenRESUMEN
BACKGROUND: Whether young adults who are infected with SARS-CoV-2 are at risk of subsequent infection is uncertain. We investigated the risk of subsequent SARS-CoV-2 infection among young adults seropositive for a previous infection. METHODS: This analysis was performed as part of the prospective COVID-19 Health Action Response for Marines study (CHARM). CHARM included predominantly male US Marine recruits, aged 18-20 years, following a 2-week unsupervised quarantine at home. After the home quarantine period, upon arrival at a Marine-supervised 2-week quarantine facility (college campus or hotel), participants were enrolled and were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a dilution of 1:150 or more on receptor-binding domain and full-length spike protein ELISA. Participants also completed a questionnaire consisting of demographic information, risk factors, reporting of 14 specific COVID-19-related symptoms or any other unspecified symptom, and brief medical history. SARS-CoV-2 infection was assessed by PCR at weeks 0, 1, and 2 of quarantine and participants completed a follow-up questionnaire, which included questions about the same COVID-19-related symptoms since the last study visit. Participants were excluded at this stage if they had a positive PCR test during quarantine. Participants who had three negative swab PCR results during quarantine and a baseline serum serology test at the beginning of the supervised quarantine that identified them as seronegative or seropositive for SARS-CoV-2 then went on to basic training at Marine Corps Recruit Depot-Parris Island. Three PCR tests were done at weeks 2, 4, and 6 in both seropositive and seronegative groups, along with the follow-up symptom questionnaire and baseline neutralising antibody titres on all subsequently infected seropositive and selected seropositive uninfected participants (prospective study period). FINDINGS: Between May 11, 2020, and Nov 2, 2020, we enrolled 3249 participants, of whom 3168 (98%) continued into the 2-week quarantine period. 3076 (95%) participants, 2825 (92%) of whom were men, were then followed up during the prospective study period after quarantine for 6 weeks. Among 189 seropositive participants, 19 (10%) had at least one positive PCR test for SARS-CoV-2 during the 6-week follow-up (1·1 cases per person-year). In contrast, 1079 (48%) of 2247 seronegative participants tested positive (6·2 cases per person-year). The incidence rate ratio was 0·18 (95% CI 0·11-0·28; p<0·001). Among seropositive recruits, infection was more likely with lower baseline full-length spike protein IgG titres than in those with higher baseline full-length spike protein IgG titres (hazard ratio 0·45 [95% CI 0·32-0·65]; p<0·001). Infected seropositive participants had viral loads that were about 10-times lower than those of infected seronegative participants (ORF1ab gene cycle threshold difference 3·95 [95% CI 1·23-6·67]; p=0·004). Among seropositive participants, baseline neutralising titres were detected in 45 (83%) of 54 uninfected and in six (32%) of 19 infected participants during the 6 weeks of observation (ID50 difference p<0·0001). INTERPRETATION: Seropositive young adults had about one-fifth the risk of subsequent infection compared with seronegative individuals. Although antibodies induced by initial infection are largely protective, they do not guarantee effective SARS-CoV-2 neutralisation activity or immunity against subsequent infection. These findings might be relevant for optimisation of mass vaccination strategies. FUNDING: Defense Health Agency and Defense Advanced Research Projects Agency.
Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/epidemiología , SARS-CoV-2/inmunología , Adolescente , COVID-19/diagnóstico , Prueba Serológica para COVID-19 , Estudios de Cohortes , Femenino , Humanos , Masculino , Estudios Prospectivos , Cuarentena , Medición de Riesgo , Adulto JovenRESUMEN
We investigated serological responses following a SARS-CoV-2 outbreak in spring 2020 on a US Marine recruit training base. 147 participants that were isolated during an outbreak of respiratory illness were enrolled in this study, with visits approximately 6 and 10 weeks post-outbreak (PO). This cohort is comprised of young healthy adults, ages 18-26, with a high rate of asymptomatic infection or mild symptoms, and therefore differs from previously reported longitudinal studies on humoral responses to SARS-CoV-2, which often focus on more diverse age populations and worse clinical presentation. 80.9% (119/147) of the participants presented with circulating IgG antibodies against SARS-CoV-2 spike (S) receptor-binding domain (RBD) at 6 weeks PO, of whom 97.3% (111/114) remained positive, with significantly decreased levels, at 10 weeks PO. Neutralizing activity was detected in all sera from SARS-CoV-2 IgG positive participants tested (n=38) at 6 and 10 weeks PO, without significant loss between time points. IgG and IgA antibodies against SARS-CoV-2 RBD, S1, S2, and the nucleocapsid (N) protein, as well neutralization activity, were generally comparable between those participants that had asymptomatic infection or mild disease. A multiplex assay including S proteins from SARS-CoV-2 and related zoonotic and human endemic betacoronaviruses revealed a positive correlation for polyclonal cross-reactivity to S after SARS-CoV-2 infection. Overall, young adults that experienced asymptomatic or mild SARS-CoV-2 infection developed comparable humoral responses, with no decrease in neutralizing activity at least up to 10 weeks after infection.
Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , Personal Militar , SARS-CoV-2/fisiología , Adolescente , Adulto , Formación de Anticuerpos , Enfermedades Asintomáticas , Estudios de Cohortes , Brotes de Enfermedades , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Estados Unidos/epidemiología , Adulto JovenRESUMEN
Pneumococcal Surface Protein A (PspA) has been successfully tested as vaccine candidate against Streptococcus pneumoniae infections. Vaccines able to induce PspA-specific antibodies and Th1 cytokines usually provide protection in mice. We have shown that the whole cell pertussis vaccine (wP) or components from acellular pertussis vaccines, such as Pertussis Toxin or Filamentous Hemagglutinin (FHA), are good adjuvants to PspA, suggesting that combined pertussis-PspA vaccines would be interesting strategies against the two infections. Here, we evaluated the potential of wP as a delivery vector to PspA. Bordetella pertussis strains producing a PspA from clade 4 (PspA4Pro) fused to the N-terminal region of FHA (Fha44) were constructed and inactivated with formaldehyde for the production of wPPspA4Pro. Subcutaneous immunization of mice with wPPspA4Pro induced low levels of anti-PspA4 IgG, even after 3 doses, and did not protect against a lethal pneumococcal challenge. Prime-boost strategies using wPPspA4Pro and PspA4Pro showed that there was no advantage in using the wPPspA4Pro vaccine. Immunization of mice with purified PspA4Pro induced higher levels of antibodies and protection against pneumococcal infection than the prime-boost strategies. Finally, purified Fha44:PspA4Pro induced high levels of anti-PspA4Pro IgG, but no protection, suggesting that the antibodies induced by the fusion protein were not directed to protective epitopes.
Asunto(s)
Adhesinas Bacterianas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Proteínas Bacterianas/farmacología , Vacuna contra la Tos Ferina/administración & dosificación , Infecciones Neumocócicas/prevención & control , Factores de Virulencia de Bordetella/administración & dosificación , Animales , Antígenos Bacterianos/farmacología , Antígenos de Superficie/farmacología , Portadores de Fármacos/administración & dosificación , Femenino , Ratones , Ratones Endogámicos BALB C , VacunaciónRESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0228055.].
RESUMEN
Zika virus (ZIKV) causes congenital Zika syndrome (CZS), which is characterized by fetal demise, microcephaly and other abnormalities. ZIKV in the pregnant woman circulation must cross the placental barrier that includes fetal endothelial cells and trophoblasts, in order to reach the fetus. CZS occurs in ~1-40% of cases of pregnant women infected by ZIKV, suggesting that mothers' infection by ZIKV during pregnancy is not deterministic for CZS phenotype in the fetus. Therefore, other susceptibility factors might be involved, including the host genetic background. We have previously shown that in three pairs of dizygotic twins discordant for CZS, neural progenitor cells (NPCs) from the CZS-affected twins presented differential in vitro ZIKV susceptibility compared with NPCs from the non-affected. Here, we analyzed human-induced-pluripotent-stem-cell-derived (hiPSC-derived) trophoblasts from these twins and compared by RNA-Seq the trophoblasts from CZS-affected and non-affected twins. Following in vitro exposure to a Brazilian ZIKV strain (ZIKVBR), trophoblasts from CZS-affected twins were significantly more susceptible to ZIKVBR infection when compared with trophoblasts from the non-affected. Transcriptome profiling revealed no differences in gene expression levels of ZIKV candidate attachment factors, IFN receptors and IFN in the trophoblasts, either before or after ZIKVBR infection. Most importantly, ZIKVBR infection caused, only in the trophoblasts from CZS-affected twins, the downregulation of genes related to extracellular matrix organization and to leukocyte activation, which are important for trophoblast adhesion and immune response activation. In addition, only trophoblasts from non-affected twins secreted significantly increased amounts of chemokines RANTES/CCL5 and IP10 after infection with ZIKVBR. Overall, our results showed that trophoblasts from non-affected twins have the ability to more efficiently activate genes that are known to play important roles in cell adhesion and in triggering the immune response to ZIKV infection in the placenta, and this may contribute to predict protection from ZIKV dissemination into fetuses' tissues.