Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Nucleic Acids Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922686

RESUMEN

The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.

2.
Mol Cell ; 65(6): 1044-1055.e5, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28306503

RESUMEN

Liquid-liquid phase separation (LLPS) of RNA-binding proteins plays an important role in the formation of multiple membrane-less organelles involved in RNA metabolism, including stress granules. Defects in stress granule homeostasis constitute a cornerstone of ALS/FTLD pathogenesis. Polar residues (tyrosine and glutamine) have been previously demonstrated to be critical for phase separation of ALS-linked stress granule proteins. We now identify an active role for arginine-rich domains in these phase separations. Moreover, arginine-rich dipeptide repeats (DPRs) derived from C9orf72 hexanucleotide repeat expansions similarly undergo LLPS and induce phase separation of a large set of proteins involved in RNA and stress granule metabolism. Expression of arginine-rich DPRs in cells induced spontaneous stress granule assembly that required both eIF2α phosphorylation and G3BP. Together with recent reports showing that DPRs affect nucleocytoplasmic transport, our results point to an important role for arginine-rich DPRs in the pathogenesis of C9orf72 ALS/FTLD.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Arginina/metabolismo , Gránulos Citoplasmáticos/metabolismo , Dipéptidos/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Arginina/química , Proteína C9orf72 , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Gránulos Citoplasmáticos/patología , ADN Helicasas , Dipéptidos/química , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Proteínas Intrínsecamente Desordenadas/química , Gotas Lipídicas/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Dominios Proteicos , Proteínas/química , ARN/metabolismo , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Factores de Tiempo , Transfección
3.
J Biol Chem ; 299(4): 103063, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841481

RESUMEN

In Bacillus subtilis, a ParB-like nucleoid occlusion protein (Noc) binds specifically to Noc-binding sites (NBSs) on the chromosome to help coordinate chromosome segregation and cell division. Noc does so by binding to CTP to form large membrane-associated nucleoprotein complexes to physically inhibit the assembly of the cell division machinery. The site-specific binding of Noc to NBS DNA is a prerequisite for CTP-binding and the subsequent formation of a membrane-active DNA-entrapped protein complex. Here, we solve the structure of a C-terminally truncated B. subtilis Noc bound to NBS DNA to reveal the conformation of Noc at this crucial step. Our structure reveals the disengagement between the N-terminal CTP-binding domain and the NBS-binding domain of each DNA-bound Noc subunit; this is driven, in part, by the swapping of helices 4 and 5 at the interface of the two domains. Site-specific crosslinking data suggest that this conformation of Noc-NBS exists in solution. Overall, our results lend support to the recent proposal that parS/NBS binding catalyzes CTP binding and DNA entrapment by preventing the reengagement of the CTP-binding domain and the DNA-binding domain from the same ParB/Noc subunit.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Segregación Cromosómica , ADN Bacteriano , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , División Celular , ADN Bacteriano/química , Dominios Proteicos , Cristalografía por Rayos X
4.
J Am Chem Soc ; 146(18): 12702-12711, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683963

RESUMEN

Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion. Here, we investigate the binding of PSMα3 to α-synuclein oligomers to discover the mechanistic basis of this protective activity. We find that PSMα3 selectively targets an α-synuclein N-terminal motif (residues 36-61) that populates a distinct conformation in the mono- and oligomeric states. This α-synuclein region plays a pivotal role in oligomer-to-fibril conversion as its absence renders the central NAC domain insufficient to prompt this structural transition. The hereditary mutation G51D, associated with early onset Parkinson's disease, causes a conformational fluctuation in this region, leading to delayed oligomer-to-fibril conversion and an accumulation of oligomers that are resistant to remodeling by molecular chaperones. Overall, our findings unveil a new targetable region in α-synuclein oligomers, advance our comprehension of oligomer-to-amyloid fibril conversion, and reveal a new facet of α-synuclein pathogenic mutations.


Asunto(s)
alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Secuencias de Aminoácidos
5.
Mol Cell Proteomics ; 21(2): 100192, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34979241

RESUMEN

The amount of any given protein in the brain is determined by the rates of its synthesis and destruction, which are regulated by different cellular mechanisms. Here, we combine metabolic labeling in live mice with global proteomic profiling to simultaneously quantify both the flux and amount of proteins in mouse models of neurodegeneration. In multiple models, protein turnover increases were associated with increasing pathology. This method distinguishes changes in protein expression mediated by synthesis from those mediated by degradation. In the AppNL-F knockin mouse model of Alzheimer's disease, increased turnover resulted from imbalances in both synthesis and degradation, converging on proteins associated with synaptic vesicle recycling (Dnm1, Cltc, Rims1) and mitochondria (Fis1, Ndufv1). In contrast to disease models, aging in wild-type mice caused a widespread decrease in protein recycling associated with a decrease in autophagic flux. Overall, this simple multidimensional approach enables a comprehensive mapping of proteome dynamics and identifies affected proteins in mouse models of disease and other live animal test settings.


Asunto(s)
Enfermedad de Alzheimer , Proteoma , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Mamíferos/metabolismo , Ratones , Ratones Transgénicos , Proteoma/metabolismo , Proteómica/métodos
6.
J Biol Chem ; 298(12): 102659, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328246

RESUMEN

Self-association of WT ß2-microglobulin (WT-ß2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-ß2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-ß2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-ß2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-ß2m. We show that the crosslinked D76N-ß2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-ß2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-ß2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-ß2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.


Asunto(s)
Amiloidosis , Microglobulina beta-2 , Humanos , Microglobulina beta-2/química , Amiloide/química , Proteínas Amiloidogénicas/genética , Sustitución de Aminoácidos , Amiloidosis/genética , Fenómenos Biofísicos , Polímeros
7.
Analyst ; 149(1): 125-136, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37982746

RESUMEN

Native ion mobility mass spectrometry has been used extensively to characterize ensembles of intrinsically disordered protein (IDP) conformers, but the extent to which the gaseous measurements provide realistic pictures of the solution conformations for such flexible proteins remains unclear. Therefore, we systematically studied the relationship between the solution and gaseous structural ensembles by measuring electrospray charge state and collision cross section (CCS) distributions for cationic and anionic forms of α-synuclein (αSN), an anionic protein in solution, as well as directly probed gas phase residue to residue distances via ion/ion reactions between gaseous α-synuclein cations and disulfonic acid linkers that form strong electrostatic bonds. We also combined results from in-solution protein crosslinking identified from native tandem mass spectrometry (MS/MS) with an initial αSN ensemble generated computationally by IDPConformerGenerator to generate an experimentally restrained solution ensemble of αSN. CCS distributions were directly calculated for the solution ensembles determined by NMR and compared to predicted gaseous conformers. While charge state and collision cross section distributions are useful for qualitatively describing the relative structural dynamics of proteins and major conformational changes induced by changes to solution states, the predicted and measured gas phase conformers include subpopulations that are significantly different than those expected from completely "freezing" solution conformations and preserving them in the gas phase. However, insights were gained on the various roles of solvent in stabilizing various conformers for extremely dynamic proteins like α-synuclein.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , alfa-Sinucleína , alfa-Sinucleína/química , Conformación Proteica , Espectrometría de Masas en Tándem , Proteínas Intrínsecamente Desordenadas/química
8.
Angew Chem Int Ed Engl ; 62(7): e202212063, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36316279

RESUMEN

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2 O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2 O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2 O to D2 O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2 O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Agua , Solventes
9.
Faraday Discuss ; 240(0): 33-43, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-35920384

RESUMEN

Sample preparation is still a significant problem for many single particle cryo-EM workflows and our understanding and developments in the area lag behind that of image processing and microscope design. Over the last few years there has been growing evidence that many of the problems which occur during sample preparation are during the time the sample resides within the thin film created during the conventional blotting process. In parallel, faster grid preparation approaches have been developed for time-resolved cryo-EM experiments allowing for non-equilibrium intermediates to be captured on the ms timescale. Therefore, an important question is how fast can we prepare suitable grids for imaging by cryo-EM and how much does this mitigate the problems observed in sample preparation? Here we use a novel approach which has been developed for time-resolved studies to produce grids on an estimated sub-1 ms timescale. While the method comes with its own challenges, a 3.8 Å reconstruction of apoferritin prepared with the ultrafast method shows that good resolutions can be achieved. Although several orders of magnitude faster than conventional approaches we show using a ribosome sample, that interactions with the air-water interface cannot be avoided with preferred orientations still present. Therefore, the work shows that faster reactions can be captured but poses the question whether speed is the answer to problems with sample preparation.


Asunto(s)
Manejo de Especímenes , Agua , Microscopía por Crioelectrón/métodos , Manejo de Especímenes/métodos
10.
Analyst ; 146(6): 2065-2073, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33538714

RESUMEN

Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins' (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.


Asunto(s)
Fluorocarburos , Albúminas , Fluorocarburos/toxicidad , Espectrometría de Masas
11.
Biochem J ; 477(7): 1203-1218, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32167135

RESUMEN

Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homolog cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTP turnover rate of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer-monomer cycle through the destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric modulation of the RocCOR dimer-monomer cycle can alter its GTPase activity, which might present a potential novel strategy to overcome the effect of LRRK2 PD mutations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlorobi/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Dominios Proteicos , Anticuerpos de Dominio Único/metabolismo , Proteínas ras/química , Regulación Alostérica , Animales , Camélidos del Nuevo Mundo , Diseño de Fármacos , Escherichia coli/metabolismo , Hidrólisis , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Multimerización de Proteína
12.
J Biol Chem ; 294(47): 17777-17789, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31611236

RESUMEN

The M42 aminopeptidases are dinuclear aminopeptidases displaying a peculiar tetrahedron-shaped structure with 12 subunits. Their quaternary structure results from the self-assembly of six dimers controlled by their divalent metal ion cofactors. The oligomeric-state transition remains debated despite the structural characterization of several archaeal M42 aminopeptidases. The main bottleneck is the lack of dimer structures, hindering the understanding of structural changes occurring during the oligomerization process. We present the first dimer structure of an M42 aminopeptidase, TmPep1050 of Thermotoga maritima, along with the dodecamer structure. The comparison of both structures has allowed us to describe how the metal ion cofactors modulate the active-site fold and, subsequently, affect the interaction interface between dimers. A mutational study shows that the M1 site strictly controls dodecamer formation. The dodecamer structure of TmPep1050 also reveals that a part of the dimerization domain delimits the catalytic pocket and could participate in substrate binding.


Asunto(s)
Aminopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo , Cobalto/metabolismo , Coenzimas/metabolismo , Multimerización de Proteína , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Aminopeptidasas/química , Proteínas Bacterianas/química , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Estabilidad de Enzimas , Iones , Modelos Moleculares , Estructura Secundaria de Proteína , Temperatura
13.
J Biol Chem ; 294(14): 5657-5665, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30755483

RESUMEN

α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or ß-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.


Asunto(s)
Catequina/análogos & derivados , Metionina/química , Agregado de Proteínas , Pliegue de Proteína , alfa-Sinucleína/química , Catequina/química , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Metionina/metabolismo , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , alfa-Sinucleína/metabolismo
14.
Proteins ; 88(12): 1639-1647, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32673419

RESUMEN

The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.


Asunto(s)
Aminopeptidasas/química , Aminopeptidasas/metabolismo , Ácido Aspártico/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Thermotoga maritima/enzimología , Aminopeptidasas/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Dominio Catalítico , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
15.
J Am Chem Soc ; 142(46): 19622-19630, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33166132

RESUMEN

In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a ß-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.

16.
Anal Chem ; 92(16): 10872-10880, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32667808

RESUMEN

Native mass spectrometry (MS) allows the interrogation of structural aspects of macromolecules in the gas phase, under the premise of having initially maintained their solution-phase noncovalent interactions intact. In the more than 25 years since the first reports, the utility of native MS has become well established in the structural biology community. The experimental and technological advances during this time have been rapid, resulting in dramatic increases in sensitivity, mass range, resolution, and complexity of possible experiments. As experimental methods have improved, there have been accompanying developments in computational approaches for analyzing and exploiting the profusion of MS data in a structural and biophysical context. In this perspective, we consider the computational strategies currently being employed by the community, aspects of best practice, and the challenges that remain to be addressed. Our perspective is based on discussions within the European Cooperation in Science and Technology Action on Native Mass Spectrometry and Related Methods for Structural Biology (EU COST Action BM1403), which involved participants from across Europe and North America. It is intended not as an in-depth review but instead to provide an accessible introduction to and overview of the topic-to inform newcomers to the field and stimulate discussions in the community about addressing existing challenges. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05792) focuses on software tools available to help researchers tackle some of the challenges enumerated here.


Asunto(s)
Biofisica/métodos , Biología Computacional/métodos , Espectrometría de Masas/estadística & datos numéricos , Espectrometría de Masas/métodos , Proteínas/análisis
17.
Anal Chem ; 92(16): 10881-10890, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32649184

RESUMEN

The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.

18.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30707468

RESUMEN

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

19.
Int J Mass Spectrom ; 447: 116240, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33244295

RESUMEN

As a fundament in many biologically relevant processes, endocytosis in its different guises has been arousing interest for decades and still does so. This is true for the actual transport and its initiation alike. In clathrin-mediated endocytosis, a comparatively well understood endocytic pathway, a set of adaptor proteins bind specific lipids in the plasma membrane, subsequently assemble and thus form a crucial bridge from clathrin to actin for the ongoing process. These adaptor proteins are highly interesting themselves and the subject of this manuscript. Using many of the instruments that are available now in the mass spectrometry toolbox, we added some facets to the picture of how these minimal assemblies may look, how they form, and what influences the structure. Especially, lipids in the adaptor protein complexes result in reduced charging of a normal sized complex due to their specific binding position. The results further support our structural model of a double ring structure with interfacial lipids.

20.
Nucleic Acids Res ; 46(1): 387-402, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29136196

RESUMEN

The RNA degradosome is a multi-enzyme assembly that plays a central role in the RNA metabolism of Escherichia coli and numerous other bacterial species including pathogens. At the core of the assembly is the endoribonuclease RNase E, one of the largest E. coli proteins and also one that bears the greatest region predicted to be natively unstructured. This extensive unstructured region, situated in the C-terminal half of RNase E, is punctuated with conserved short linear motifs that recruit partner proteins, direct RNA interactions, and enable association with the cytoplasmic membrane. We have structurally characterized a subassembly of the degradosome-comprising a 248-residue segment of the natively unstructured part of RNase E, the DEAD-box helicase RhlB and the glycolytic enzyme enolase, and provide evidence that it serves as a flexible recognition centre that can co-recruit small regulatory RNA and the RNA chaperone Hfq. Our results support a model in which the degradosome captures substrates and regulatory RNAs through the recognition centre, facilitates pairing to cognate transcripts and presents the target to the ribonuclease active sites of the greater assembly for cooperative degradation or processing.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , ARN Bacteriano/metabolismo , Sitios de Unión/genética , Cristalografía por Rayos X , Endorribonucleasas/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , Modelos Moleculares , Complejos Multienzimáticos/genética , Conformación de Ácido Nucleico , Polirribonucleótido Nucleotidiltransferasa/genética , Unión Proteica , Dominios Proteicos , ARN Helicasas/genética , ARN Bacteriano/química , ARN Bacteriano/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda