Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290442

RESUMEN

Reactive oxygen species (ROS) is major risk factor in neuronal diseases including ischemia. Although biliverdin reductase A (BLVRA) plays a pivotal role in cell survival via its antioxidant function, its role in hippocampal neuronal (HT-22) cells and animal ischemic injury is not clearly understood yet. In this study, the effects of transducible fusion protein Tat-BLVRA on H2O2-induced HT-22 cell death and in an animal ischemia model were investigated. Transduced Tat-BLVRA markedly inhibited cell death, DNA fragmentation, and generation of ROS. Transduced Tat-BLVRA inhibited the apoptosis and mitogen activated protein kinase (MAPK) signaling pathway and it passed through the blood-brain barrier (BBB) and significantly prevented hippocampal cell death in an ischemic model. These results suggest that Tat-BLVRA provides a possibility as a therapeutic molecule for ischemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Productos del Gen tat , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular , Modelos Animales de Enfermedad , Productos del Gen tat/genética , Gerbillinae , Peróxido de Hidrógeno/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/genética
2.
Biochim Biophys Acta ; 1820(10): 1647-55, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22743691

RESUMEN

BACKGROUND: Oxidative stress is considered to be involved in a number of human diseases including ischemia. Metallothioneins (MT)-III can protect neuronal cells from the cytotoxicity of reactive oxygen species (ROS). However, MT-III proteins biological function is unclear in ischemia. Thus, we examined the protective effects of MT-III proteins on oxidative stress-induced neuronal cell death and brain ischemic insult. METHODS: A human MT-III gene was fused with a protein transduction domain, PEP-1 peptide, to construct a cell permeable PEP-1-MT-III protein. PEP-1-MT-III protein was purified using affinity chromatograph. Transduced PEP-1-MT-III proteins were detected by Western blotting and immunoflourescence. Cell viability and DNA fragmentation were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheyltetrazolium bromide (MTT) assay and terminal dexoynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, respectively. Brain ischemic injury was detected with immunohistochemistry. RESULTS: Purified PEP-1-MT-III proteins transduced into astrocytes in a time- and dose-dependent manner and protected against oxidative stress-induced cell death. Also, transduced PEP-1-MT-III proteins efficiently protected cells against DNA fragmentation. Furthermore, immunohistochemical analysis revealed that PEP-1-MT-III prevented neuronal cell death in the CA1 region of the hippocampus induced by transient forebrain ischemia. We demonstrated that transduced PEP-1-MT-III protein protects against oxidative stress induced cell death in vitro and in vivo. GENERAL SIGNIFICANCE: Transduced PEP-1-MT-III protein has neuroprotective roles as an antioxidant in vitro and in vivo. PEP-1-MT-III protein is a potential therapeutic agent for various human brain diseases such as stroke, Alzheimer's disease, and Parkinson's disease.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Cisteamina/análogos & derivados , Proteínas del Tejido Nervioso/farmacología , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Péptidos/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Cisteamina/química , Cisteamina/farmacología , Cisteamina/uso terapéutico , Gerbillinae , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/genética , Metalotioneína 3 , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/uso terapéutico , Neuronas/metabolismo , Neuronas/fisiología , Estrés Oxidativo/genética , Péptidos/química , Péptidos/genética , Péptidos/uso terapéutico , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Transducción Genética/métodos
3.
BMB Rep ; 56(4): 234-239, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36571143

RESUMEN

Thioredoxin-like protein 1 (TXNL1), one of the thioredoxin superfamily known as redox-regulator, plays an essential in maintaining cell survival via various antioxidant and anti-apoptotic mechanisms. It is well known that relationship between ischemia and oxidative stress, however, the role of TXNL1 protein in ischemic damage has not been fully investigated. In the present study, we aimed to determine the protective role of TXNL1 against on ischemic injury in vitro and in vivo using cell permeable Tat-TXNL1 fusion protein. Transduced Tat-TXNL1 inhibited ROS production and cell death in H2O2-exposed hippocampal neuronal (HT-22) cells and modulated MAPKs and Akt activation, and pro-apoptotic protein expression levels in the cells. In an ischemia animal model, Tat-TXNL1 markedly decreased hippocampal neuronal cell death and the activation of astrocytes and microglia. These findings indicate that cell permeable Tat-TXNL1 protects against oxidative stress in vitro and in vivo ischemic animal model. Therefore, we suggest Tat-TXNL1 can be a potential therapeutic protein for ischemic injury. [BMB Reports 2023; 56(4): 234-239].


Asunto(s)
Lesiones Encefálicas , Peróxido de Hidrógeno , Animales , Peróxido de Hidrógeno/farmacología , Línea Celular , Apoptosis , Estrés Oxidativo , Productos del Gen tat/metabolismo , Isquemia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo
4.
Heliyon ; 9(5): e15945, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37223703

RESUMEN

Background: Oxidative stress is considered as one of the main causes of Parkinson's disease (PD), however the exact etiology of PD is still unknown. Although it is known that Proviral Integration Moloney-2 (PIM2) promotes cell survival by its ability to inhibit formation of reactive oxygen species (ROS) in the brain, the precise functional role of PIM2 in PD has not been fully studied yet. Objective: We investigated the protective effect of PIM2 against apoptosis of dopaminergic neuronal cells caused by oxidative stress-induced ROS damage by using the cell permeable Tat-PIM2 fusion protein in vitro and in vivo. Methods: Transduction of Tat-PIM2 into SH-SY5Y cells and apoptotic signaling pathways were determined by Western blot analysis. Intracellular ROS production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. PD animal model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and protective effects were examined using immunohistochemistry. Results: Transduced Tat-PIM2 inhibited the apoptotic caspase signaling and reduced the production of ROS induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Furthermore, we confirmed that Tat-PIM2 transduced into the substantia nigra (SN) region through the blood-brain barrier and this protein protected the Tyrosine hydroxylase-positive cells by observation of immunohistostaining. Tat-PIM2 also regulated antioxidant biomolecules such as SOD1, catalase, 4-HNE, and 8-OHdG which reduce the formation of ROS in the MPTP-induced PD mouse model. Conclusion: These results indicated that Tat-PIM2 markedly inhibited the loss of dopaminergic neurons by reducing ROS damage, suggesting that Tat-PIM2 might be a suitable therapeutic agent for PD.

5.
Biochem Biophys Res Commun ; 406(3): 336-40, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21324306

RESUMEN

The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1ß, and tumor necrosis factor-α induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Catalasa/metabolismo , Cisteamina/análogos & derivados , Dermatitis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Queratinocitos/efectos de los fármacos , Péptidos/metabolismo , Pergolida/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Catalasa/administración & dosificación , Línea Celular , Cisteamina/administración & dosificación , Cisteamina/metabolismo , Humanos , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Péptidos/administración & dosificación , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/administración & dosificación , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/toxicidad
6.
Biochem Biophys Res Commun ; 411(2): 354-9, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21741361

RESUMEN

Heme oxygenase-1 (HO-1), which catalyzes the degradation of free heme to biliverdin, carbon monoxide (CO), and free iron (Fe(2+)), is up-regulated by several cellular stress and cell injuries, including inflammation, ischemia and hypoxia. In this study, we examined whether fusion of HO-1 with PEP-1, a protein transduction domain that is able to deliver exogenous molecules to living cells or tissues, would facilitate HO-1 delivery to target cells and tissues, and thereby effectively exert a therapeutically useful response against inflammation. Western blot analysis demonstrated that PEP-1-HO-1 fusion proteins were transduced into Raw 264.7 cells in time- and dose-dependent manners, and were stably maintained in the cells for about 60h. In addition, fluorescence analysis revealed that only PEP-1-HO-1 fusion proteins were significantly transduced into the cytoplasm of cells, while HO-1 proteins failed to be transduced. In lipopolysaccharide (LPS)-stimulated Raw 264.7 cells and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse edema model, transduced PEP-1-HO-1 fusion proteins effectively inhibited the overexpression of pro-inflammatory mediators and cytokines. Also, histological analysis demonstrated that PEP-1-HO-1 remarkably suppressed ear edema. The results suggest that the PEP-1-HO-1 fusion protein can be used as a therapeutic molecule against reactive oxygen species-related inflammatory diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Edema/terapia , Hemo-Oxigenasa 1/uso terapéutico , Inflamación/terapia , Proteínas Recombinantes de Fusión/uso terapéutico , Animales , Línea Celular , Modelos Animales de Enfermedad , Edema/tratamiento farmacológico , Hemo-Oxigenasa 1/genética , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos ICR , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Transducción Genética
7.
Assay Drug Dev Technol ; 19(7): 442-452, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34415786

RESUMEN

FK506-binding proteins (FKBPs) belong to the immunophilin family and are linked to various disease states, including the inflammatory response. The inhibition of cytokine and chemokine expression in addition to positive effects of FKBPs on corneal inflammation in animal models suggests that they may be used for ophthalmic delivery in the treatment of dry eye disease. To pass the effective barriers protecting eye tissues, testing the transduction domains of FKBPs is essential. However, monitoring their transduction efficiencies is not a simple task. The quantitative measurement of FKBP interactions was performed using a cell model with a specific G protein-coupled receptor, as FKBPs had been known to act at the inositol 1,4,5-trisphosphate receptor (IP3R) leading to the inhibition of intracellular calcium mobilization. Because of its luminescence amplitude and stability, human urotensin II receptor was expressed in aequorin parental cells to measure the action of selected FKBPs. This luminescence-based functional assay platform exhibited a high signal-to-background ratio of more than 100 and a Z' factor at 0.6204. As expected, changes in the sequence of the transduction domain affected the function of the FKBPs. The intracellular calcium mobilization assay with selected FKBPs represented a robust and reliable platform to screen initial candidates. Although the precise nature of the control that FKBPs exert on the IP3R is uncertain, this approach can be used to develop innovative anti-inflammatory treatments for dry eye disease by optimizing protein transduction domain sequences.


Asunto(s)
Proteínas de Unión a Tacrolimus , Tacrolimus , Secuencia de Aminoácidos , Animales , Calcio , Proteínas Portadoras , Humanos , Tacrolimus/farmacología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
8.
Biomol Ther (Seoul) ; 29(3): 321-330, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436533

RESUMEN

Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H2O2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.

9.
Exp Ther Med ; 22(6): 1395, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34650643

RESUMEN

Thioredoxin 1 (Trx1) serves a central role in redox homeostasis. It is involved in numerous other processes, including oxidative stress and apoptosis. However, to the best of our knowledge, the role of Trx1 in inflammation remains to be explored. The present study investigated the function and mechanism of cell permeable fused Tat-Trx1 protein in macrophages and a mouse model. Transduction levels of Tat-Trx1 were determined via western blotting. Cellular distribution of transduced Tat-Trx1 was determined by fluorescence microscopy. 2',7'-Dichlorofluorescein diacetate and TUNEL staining were performed to determine the production of reactive oxygen species and DNA fragmentation. Protein and gene expression were measured by western blotting and reverse transcription-quantitative PCR (RT-qPCR), respectively. Effects of skin inflammation were determined using hematoxylin and eosin staining, changes in ear weight and ear thickness, and RT-qPCR in ear edema animal models. Transduced Tat-Trx1 inhibited lipopolysaccharide-induced cytotoxicity and activation of NF-κB, MAPK and Akt. Additionally, Tat-Trx1 markedly reduced the production of inducible nitric oxide synthase, cyclooxygenase-2, IL-1ß, IL-6 and TNF-α in macrophages. In a 12-O-tetradecanoylphorbol-13-acetate-induced mouse model, Tat-Trx1 reduced inflammatory damage by inhibiting inflammatory mediator and cytokine production. Collectively, these results demonstrated that Tat-Trx1 could exert anti-inflammatory effects by inhibiting the production of pro-inflammatory mediators and cytokines and by modulating MAPK signaling. Therefore, Tat-Trx1 may be a useful therapeutic agent for diseases induced by inflammatory damage.

10.
BMB Rep ; 53(11): 582-587, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32684242

RESUMEN

It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/ reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury. [BMB Reports 2020; 53(11): 582-587].


Asunto(s)
Isquemia Encefálica/fisiopatología , Indolamina-Pirrol 2,3,-Dioxigenasa/farmacología , Daño por Reperfusión/terapia , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Gerbillinae , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Isquemia/metabolismo , Masculino , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo
11.
Mol Med Rep ; 18(2): 2216-2228, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29916538

RESUMEN

Oxidative stress is known to be a primary risk factor for neuronal diseases. Glutaredoxin (GLRX)­1, a redox­regulator of the thioredoxin superfamily, is known to exhibit an important role in cell survival via various cellular functions. However, the precise roles of GLRX1 in brain ischemia are still not fully understood. The present study investigated whether transduced PEP­1­GLRX1 protein has protective effects against oxidative stress in cells and in an animal model. Transduced PEP­1­GLRX1 protein increased HT­22 cell viability under oxidative stress and this fusion protein significantly reduced intracellular reactive oxygen species and levels of DNA damage. In addition, PEP­1­GLRX1 protein regulated RAC­a serine/threonine­protein kinase and mitogen­activated protein kinase signaling, in addition to apoptotic signaling including B cell lymphoma (Bcl)­2, Bcl­2 associated X, apoptosis regulator, pro­caspase­9 and p53 expression levels. In an ischemic animal model, it was verified that PEP­1­GLRX1 transduced into the Cornu Ammonis 1 region of the animal brain, where it markedly protected against ischemic injury. These results indicate that PEP­1­GLRX1 attenuates neuronal cell death resulting from oxidative stress in vitro and in vivo. Therefore, PEP­1­GLRX1 may exhibit a beneficial role in the treatment of neuronal disorders, including ischemic injury.


Asunto(s)
Cisteamina/análogos & derivados , Glutarredoxinas/farmacología , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos/farmacología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular , Cisteamina/farmacología , Hipocampo/patología , Ratones , Neuronas/patología
12.
Mol Brain ; 10(1): 1, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28052764

RESUMEN

Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.


Asunto(s)
Productos del Gen tat/farmacología , Proteínas de Choque Térmico/farmacología , Hipocampo/patología , Mitocondrias/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/farmacología , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Gerbillinae , Peróxido de Hidrógeno/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Chaperonas Moleculares , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Transducción Genética
13.
Int J Mol Med ; 38(1): 225-35, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27221790

RESUMEN

Oxidative stress-induced apoptosis is associated with neuronal cell death and ischemia. The NOL3 [nucleolar protein 3 (apoptosis repressor with CARD domain)] protein protects against oxidative stress-induced cell death. However, the protective mechanism responsible for this effect as well as the effects of NOL3 against oxidative stress in ischemia remain unclear. Thus, we examined the protective effects of NOL3 protein on hydrogen peroxide (H2O2)-induced oxidative stress and the mechanism responsible for these effects in hippocampal neuronal HT22 cells and in an animal model of forebrain ischemia using Tat-fused NOL3 protein (Tat-NOL3). Purified Tat-NOL3 protein transduced into the H2O2-exposed HT22 cells and inhibited the production of reactive oxygen species (ROS), DNA fragmentation and reduced mitochondrial membrane potential (ΔΨm). In addition, Tat-NOL3 prevented neuronal cell death through the regulation of apoptotic signaling pathways including Bax, Bcl-2, caspase-2, -3 and -8, PARP and p53. In addition, Tat-NOL3 protein transduced into the animal brains and significantly protected against neuronal cell death in the CA1 region of the hippocampus by regulating the activation of microglia and astrocytes. Taken together, these findings demonstrate that Tat-NOL3 protein protects against oxidative stress-induced neuronal cell death by regulating oxidative stress and by acting as an anti-apoptotic protein. Thus, we suggest that Tat-NOL3 represents a potential therapeutic agent for protection against ischemic brain injury.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/farmacología , Apoptosis/efectos de los fármacos , Hipocampo/patología , Proteínas Musculares/farmacología , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Gerbillinae , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción Genética
14.
Free Radic Biol Med ; 97: 250-262, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27317854

RESUMEN

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Isquemia Encefálica/metabolismo , Estrés Oxidativo , Fosfoproteínas/farmacología , Proteínas Recombinantes de Fusión/farmacología , Proteínas 14-3-3/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Región CA1 Hipocampal/patología , Línea Celular , Fragmentación del ADN , Evaluación Preclínica de Medicamentos , Gerbillinae , Masculino , Procesamiento Proteico-Postraduccional
15.
BMB Rep ; 49(7): 382-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27049109

RESUMEN

Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stressinduced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases. [BMB Reports 2016; 49(7): 382-387].


Asunto(s)
Gutatión-S-Transferasa pi/metabolismo , Hipocampo/metabolismo , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cisteamina/análogos & derivados , Cisteamina/metabolismo , Gutatión-S-Transferasa pi/genética , Fármacos Neuroprotectores/farmacología , Péptidos/genética , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
16.
J Med Food ; 18(2): 157-65, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25546299

RESUMEN

Deer bone has been used as a health-enhancing food as well as an antiaging agent in traditional Oriental medicine. Recently, the water extract of deer bone (DBE) showed a neuroprotective action against glutamate or Aß1-42-induced cell death of mouse hippocampal cells by exerting antioxidant activity through the suppression of MAP kinases. The present study is to examine whether DBE improves memory impairment induced by scopolamine. DBE (50, 100 or 200 mg/kg) was administered orally to mice for 14 days, and then scopolamine (2 mg/kg, i.p.) was administered together with DBE for another 7 days. Memory performance was evaluated in the Morris water maze (MWM) test and passive avoidance test. Also, brain acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity, biomarkers of oxidative stress and the loss of neuronal cells in the hippocampus, was evaluated by histological examinations. Administration of DBE significantly restored memory impairments induced by scopolamine in the MWM test (escape latency and number of crossing platform area), and in the passive avoidance test. Treatment with DBE inhibited the AChE activity and increased the ChAT activity in the brain of memory-impaired mice induced by scopolamine. Additionally, the administration of DBE significantly prevented the increase of lipid peroxidation and the decrease of glutathione level in the brain of mice treated with scopolamine. Also, the DBE treatment restored the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase to control the level. Furthermore, scopolamine-induced oxidative damage of neurons in hippocampal CA1 and CA3 regions were prevented by DBE treatment. It is suggested that DBE may be useful for memory improvement through the regulation of cholinergic marker enzyme activities and the suppression of oxidative damage of neurons in the brain of mice treated with scopolamine.


Asunto(s)
Antioxidantes/farmacología , Huesos , Reactivadores de la Colinesterasa/análisis , Ciervos , Trastornos de la Memoria/tratamiento farmacológico , Extractos de Tejidos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/enzimología , Colina O-Acetiltransferasa/metabolismo , Antagonistas Colinérgicos , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hipocampo/anatomía & histología , Peroxidación de Lípido , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Escopolamina , Superóxido Dismutasa/metabolismo
17.
BMB Rep ; 48(7): 395-400, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25322954

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl- 4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases.


Asunto(s)
Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Proteínas Recombinantes de Fusión/uso terapéutico , Estrés Fisiológico/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/patología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Transducción Genética
18.
BMB Rep ; 48(11): 618-23, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25817214

RESUMEN

FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI.


Asunto(s)
Quemaduras Químicas/tratamiento farmacológico , Córnea/efectos de los fármacos , Lesiones de la Cornea/prevención & control , Quemaduras Oculares/tratamiento farmacológico , Proteínas de Unión a Tacrolimus/farmacología , Animales , Quemaduras Químicas/patología , Córnea/patología , Neovascularización de la Córnea/metabolismo , Modelos Animales de Enfermedad , Quemaduras Oculares/patología , Inflamación/metabolismo , Masculino , Péptidos/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
19.
J Med Food ; 17(10): 1057-63, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25238199

RESUMEN

In this study, the anti-inflammatory and antisepticemic activities of a water extract of aged black garlic (AGE), which is not pungent, were compared with those of raw garlic extract (RGE). The methyl thiazolyl tetrazolium (MTT) assay showed that AGE was not toxic up to 1000 µg/mL and was at least four times less cytotoxic than RGE. AGE significantly suppressed the production of nitric oxide (NO), tumor-necrosis factor-α (TNF-α), and prostaglandin (PG)-E2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the inhibitory effect of AGE on LPS-induced inflammation was confirmed by downregulation of inducible NO synthase and TNF-α mRNA expression, as well as cyclooxygenase-2 protein expression. The anti-inflammatory activities of AGE were similar to those of RGE at nontoxic concentrations up to 250 µg/mL. Signal transduction pathway studies further indicated that both garlic extracts inhibited activation of mitogen-activated protein kinase and nuclear factor-κB induced by LPS stimulation. Treatment with both AGE and RGE in an in vivo experiment of LPS-induced endotoxemia significantly reduced the level of TNF-α and interleukin-6 in serum and completely protected against LPS-induced lethal shock in C57BL/6 mice. The results suggest that AGE is a more promising nutraceutical or medicinal agent to prevent or cure inflammation-related diseases for safety aspects compared with RGE.


Asunto(s)
Antiinflamatorios/administración & dosificación , Citocinas/genética , Ajo/química , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Óxido Nítrico/inmunología , Extractos Vegetales/administración & dosificación , Sepsis/tratamiento farmacológico , Animales , Antiinflamatorios/efectos adversos , Citocinas/inmunología , Dinoprostona/inmunología , Regulación hacia Abajo/efectos de los fármacos , Ajo/efectos adversos , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/inmunología , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Extractos Vegetales/efectos adversos , Sepsis/genética , Sepsis/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
20.
PLoS One ; 9(1): e86034, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465855

RESUMEN

Paraoxonase 1 (PON1) is an antioxidant enzyme which plays a central role in various diseases. However, the mechanism and function of PON1 protein in inflammation are poorly understood. Since PON1 protein alone cannot be delivered into cells, we generated a cell permeable PEP-1-PON1 protein using protein transduction domains, and examined whether it can protect against cell death in lipopolysaccharide (LPS) or hydrogen peroxide (H2O2)-treated Raw 264.7 cells as well as mice with 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced skin inflammation. We demonstrated that PEP-1-PON1 protein transduced into Raw 264.7 cells and markedly protected against LPS or H2O2-induced cell death by inhibiting cellular reactive oxygen species (ROS) levels, the inflammatory mediator's expression, activation of mitogen-activated protein kinases (MAPKs) and cellular apoptosis. Furthermore, topically applied PEP-1-PON1 protein ameliorates TPA-treated mice skin inflammation via a reduction of inflammatory response. Our results indicate that PEP-1-PON1 protein plays a key role in inflammation and oxidative stress in vitro and in vivo. Therefore, we suggest that PEP-1-PON1 protein may provide a potential protein therapy against oxidative stress and inflammation.


Asunto(s)
4-Butirolactona/análogos & derivados , Antiinflamatorios/farmacología , Dermatitis por Contacto/metabolismo , Macrófagos/inmunología , 4-Butirolactona/farmacología , Animales , Línea Celular , Supervivencia Celular , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Dermatitis por Contacto/inmunología , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Acetato de Tetradecanoilforbol
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda