RESUMEN
A robust route to produce poly(methyl methacrylate) (pMMA) hybrid latex particles (radius â¼250 nm) that are selectively "armored" with silica nanoparticles (radius 12.5 nm) through addition of vinyltriethoxysilane was previously shown ( J. Colloid Interface Sci. 2018, 528, 289-300).Depending on synthesis conditions, the extent of nanoparticle attachment could be varied; however, the mechanism behind this attachment during latex growth remained unclear. The dual population of particles present (silica + polymer) means that particle sizing by dynamic light scattering is ambiguous. Furthermore, the low glass transition temperature (Tg) of polymers such as poly(butyl acrylate) (pBA) typically used in film-forming applications for decorative coatings (i.e., paints) means that the hybrid latex particles are too "soft" for robust analysis through atomic force microscopy (AFM) and scanning electron microscopy (SEM). Here, we show that small- and ultrasmall-angle neutron scattering (SANS and USANS), along with complementary data from small-angle X-ray scattering (SAXS), reveals that these armored hybrid latex particles adopt a raspberry-type configuration, supporting their core-shell structure. The number of nanoparticles present on the surface of the hybrid latex can be adjusted by addition of one of a diverse range of alkyl- or perfluoroalkyl-silanes to alter silica nanoparticle hydrophobicity, and quantified through analysis of scattering data. The approach therefore provides a novel, nonperturbative, and in situ method of quantifying nanoparticle attachment to polymer latex particles.
RESUMEN
Surfactants provide detergency, foaming, and texture in personal care formulations, yet the micellization of typical industrial primary and cosurfactants is not well understood, particularly in light of the polydisperse nature of commercial surfactants. Synergistic interactions are hypothesized to drive the formation of elongated wormlike self-assemblies in these mixed surfactant systems. Small-angle neutron scattering, rheology, and pendant drop tensiometry are used to examine surface adsorption, viscoelasticity, and self-assembly structure for wormlike micellar formulations comprising cocoamidopropyl betaine, and its two major components laurylamidopropyl betaine and oleylamidopropyl betaine, with sodium alkyl ethoxy sulfates. The tail length of sodium alkyl ethoxy sulfates was related to their ability to form wormlike micelles in electrolyte solutions, indicating that a tail length greater than 10 carbons is required to form wormlike micelles in NaCl solutions, with the decyl homologue unable to form elongated micelles and maintaining a low viscosity even at 20 wt % surfactant loading with 4 wt % NaCl present. For these systems, the incorporation of a disperse ethoxylate linker does not enable shorter chain surfactants to elongate into wormlike micelles for single-component systems; however, it could increase the interactions between surfactants in mixed surfactant systems. For synergy in surfactant mixing, the nonideal regular solution theory is used to study the sulfate/betaine mixtures. Tail mismatch appears to drive lower critical micelle concentrations, although tail matching improves synergy with larger relative reductions in critical micelle concentrations and greater micelle elongation, as seen by both tensiometric and scattering measurements.
RESUMEN
Aquaporin 3 (AQP3) channels are tetrameric membrane-bound channels that facilitate the transport of water and other small solutes across cell membranes in the skin. Decreased AQP3 expression is associated with skin dryness, skin aging, psoriasis, and delayed wound healing. Thus, our study focused on a novel combination based on Aloe barbadensis leaf extract and trimethylglycine for targeted AQP3 regulation in skin keratinocytes and deep skin moisturization. Firstly, a dose-finding cytotoxicity assay of the selected substances was performed with a 2,5-diphenyl-2H-tetrazolium bromide (MTT) indicator on HaCaT cells. The substances' ability to increase the amount of AQP3 in keratinocytes was evaluated in a keratinocyte cell culture by means of ELISA. Additionally, the deep skin hydration effect was confirmed in clinical research with healthy volunteers. According to the results, the maximum tolerated doses providing viability at 70% (MTDs) values for Aloe barbadensis leaf extract and trimethylglycine were 24.50% and 39.00%, respectively. Following the research and development, a complex based on Aloe barbadensis leaf extract and trimethylglycine in a 1:1 mass ratio exhibited a good cytotoxicity profile, with an MTDs value of 37.90%. Furthermore, it was shown that the combination had a clear synergetic effect and significantly increased AQP3 by up to 380% compared to the negative control and glyceryl glucoside (p < 0.001). It was clinically confirmed that the developed shower gel containing Aloe barbadensis leaf extract and trimethylglycine safely improved skin hydration after one use and over 28 days. Thus, this novel plant-based combination has promising potential for AQP3 regulation in the skin epidermis and a role in the development of dermatological drugs for the treatment of skin xerosis and atopic-related conditions.
Asunto(s)
Aloe , Humanos , Acuaporina 3 , Piel , Queratinocitos , Betaína , Extractos Vegetales/farmacologíaRESUMEN
Cysts of the retrorectal space comprise a heterogeneous group of rare lesions. Most develop from embryological remnants and include tailgut cysts, dermoid cysts, rectal duplication cysts, anal canal duplication cysts, sacrococcygeal teratomas and anterior meningocoele. Tailgut cyst is the most common cyst of developmental origin, usually presenting as a multilocular cystic mass with mucoid content and lined by multiple epithelial types. Compared with tailgut cysts, rectal duplication cysts display all layers of the large bowel wall including a well-defined muscularis propria. Retrorectal cysts of non-developmental origin are far less common and represent lesions that either infrequently involve the retrorectal space or undergo extensive cystic change. This review provides an overview of the various histological types of cystic lesions of the retrorectal space, divided into cysts of developmental origin and those of non-developmental origin. A practical pathological and multidisciplinary approach to diagnosing these lesions is presented.
Asunto(s)
Quistes , Neoplasias del Recto , Recto , Humanos , AdenocarcinomaRESUMEN
Azobenzene-containing surfactants (azo-surfactants) have garnered significant attention for their use in generating photoresponsive foams, interfaces, and colloidal systems. The photoresponsive behavior of azo-surfactants is driven by the conformational and electronic changes that occur when the azobenzene chromophore undergoes light-induced trans â cis isomerization. Effective design of surfactants and targeting of their properties requires a robust understanding of how the azobenzene functionality interacts with surfactant structure and influences overall surfactant behavior. Herein, a library of tail substituted azo-surfactants were synthesized and studied to better understand how surfactant structure can be tailored to exploit the azobenzene photoswitch. This work shows that tail group structure (length and branching) has a profound influence on the critical micelle concentration of azo-surfactants and their properties once adsorbed to an air-water interface. Neutron scattering studies revealed the unique role that intermolecular π-π azobenzene interactions have on the self-assembly of azo-surfactants, and how the influence of these interactions can be tuned using tail group structure to target specific aqueous aggregate morphologies.
RESUMEN
Lobular neoplasia (LN) is an atypical proliferation of small, dyscohesive epithelial cells within the terminal duct lobular unit (TDLU), with or without pagetoid extension and encompasses both lobular carcinoma in situ (LCIS) and atypical lobular hyperplasia (ALH). LN is a non-obligate precursor of invasive breast carcinoma and the diagnosis of LN confers an increased risk of invasive carcinoma development, compared to the general population. Diagnostic challenges arise in the accurate classification of LCIS into classic, pleomorphic and florid subtypes, in distinguishing between LCIS and ductal carcinoma in situ (DCIS) and in the appropriate use and interpretation of E-cadherin immunohistochemistry. Due to the paucity of robust data on the natural history of LCIS, and hence its clinical significance, the management is often pragmatic rather than entirely evidence-based and requires a multidisciplinary approach. In this review, we discuss the clinicopathologic and molecular features of LCIS and address the key challenges that arise in the diagnosis and management of LCIS.
Asunto(s)
Carcinoma de Mama in situ , Biopsia con Aguja Gruesa , Carcinoma de Mama in situ/diagnóstico , Carcinoma de Mama in situ/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Cadherinas/análisis , Carcinoma Intraductal no Infiltrante/diagnóstico , Carcinoma Intraductal no Infiltrante/patología , Diagnóstico Diferencial , Femenino , Humanos , Inmunohistoquímica , Glándulas Mamarias Humanas/patología , Lesiones Precancerosas/patologíaRESUMEN
In this work, we focus on silent speech recognition in electroencephalography (EEG) data of healthy individuals to advance brain-computer interface (BCI) development to include people with neurodegeneration and movement and communication difficulties in society. Our dataset was recorded from 270 healthy subjects during silent speech of eight different Russia words (commands): 'forward', 'backward', 'up', 'down', 'help', 'take', 'stop', and 'release', and one pseudoword. We began by demonstrating that silent word distributions can be very close statistically and that there are words describing directed movements that share similar patterns of brain activity. However, after training one individual, we achieved 85% accuracy performing 9 words (including pseudoword) classification and 88% accuracy on binary classification on average. We show that a smaller dataset collected on one participant allows for building a more accurate classifier for a given subject than a larger dataset collected on a group of people. At the same time, we show that the learning outcomes on a limited sample of EEG-data are transferable to the general population. Thus, we demonstrate the possibility of using selected command-words to create an EEG-based input device for people on whom the neural network classifier has not been trained, which is particularly important for people with disabilities.
Asunto(s)
Interfaces Cerebro-Computador , Percepción del Habla , Electroencefalografía , Humanos , Redes Neurales de la Computación , HablaRESUMEN
BACKGROUND: Metaplastic breast carcinoma encompasses a heterogeneous group of tumours with differentiation into squamous and/or spindle, chondroid, osseous or rhabdoid mesenchymal-looking elements. Emerging immunotherapies targeting Programmed Death Ligand 1 (PD-L1) and immune-suppressing T cells (Tregs) may benefit metaplastic breast cancer patients, which are typically chemo-resistant and do not express hormone therapy targets. METHODS: We evaluated the immunohistochemical expression of PD-L1 and FOXP3, and the extent of tumour infiltrating lymphocytes (TILs) in a large cohort of metaplastic breast cancers, with survival data. RESULTS: Metaplastic breast cancers were significantly enriched for PD-L1 positive tumour cells, compared to triple-negative ductal breast cancers (P < 0.0001), while there was no significant difference in PD-L1 positive TILs. Metaplastic breast cancers were also significantly enriched for TILs expressing FOXP3, with FOXP3 positive intra-tumoural TILs (iTILs) associated with an adverse prognostic outcome (P = 0.0226). Multivariate analysis identified FOXP3 iTILs expression status as an important independent prognostic factor for patient survival. CONCLUSIONS: Our findings indicate the clinical significance and prognostic value of FOXP3, PD-1/PD-L1 checkpoint and TILs in metaplastic breast cancer and confirm that a subset of metaplastics may benefit from immune-based therapies.
Asunto(s)
Antígeno B7-H1/biosíntesis , Biomarcadores de Tumor/inmunología , Neoplasias de la Mama/patología , Factores de Transcripción Forkhead/biosíntesis , Adulto , Anciano , Neoplasias de la Mama/inmunología , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico , Linfocitos Infiltrantes de Tumor/inmunología , Metaplasia , Persona de Mediana EdadRESUMEN
Concentrated wormlike micellar fluids form the basis for a vast array of formulated products, from liquid soaps and shampoos to drag reduction and drilling fluids. Typically, these systems are analyzed using bulk rheological measurements to determine their flow properties and cryo-microscopy to detect their nanostructure. Small-angle neutron scattering provides an opportunity to directly and nonperturbatively analyze nanostructure in situ but is complicated for concentrated systems by correlations from interparticle volume exclusion. Here, we use small-angle and ultra-small-angle neutron scattering to probe directly for the first time the nanostructure of concentrated wormlike micellar fluids composed of the widely used surfactant pair sodium laureth sulfate and cocamidopropyl betaine in aqueous electrolytes. Obtained data are analyzed using different approaches to determine scattering contributions from the wormlike particles themselves and interactions between them. It is found that approximating worms as locally rigid cylinders offers some insight into their aggregation dimensions at short length scales, and both volume exclusion and screened Coulombic interaction potentials describe interactions reasonably well. Using the semi-empirical polymer reference interaction site model (PRISM) gives excellent agreement with observed scattering, and physical insight obtained using this approach is discussed in detail. A drawback of this method is the significant complexity in coding the model in order to fit data, so to facilitate this for future researchers, we provide with this paper a fully operational, open-source code to utilize this model.
RESUMEN
For evolving biological and biomedical applications of hybrid protein?lipid materials, understanding the behavior of the protein within the lipid mesophase is crucial. After more than two decades since the invention of the in meso crystallization method, a protein-eye view of its mechanism is still lacking. Numerous structural studies have suggested that integral membrane proteins preferentially partition at localized flat points on the bilayer surface of the cubic phase with crystal growth occurring from a local fluid lamellar L? phase conduit. However, studies to date have, by necessity, focused on structural transitions occurring in the lipid mesophase. Here, we demonstrate using small-angle neutron scattering that the lipid bilayer of monoolein (the most commonly used lipid for in meso crystallization) can be contrast-matched using deuteration, allowing us to isolate scattering from encapsulated peptides during the crystal growth process for the first time. During in meso crystallization, a clear decrease in form factor scattering intensity of the peptides was observed and directly correlated with crystal growth. A transient fluid lamellar L? phase was observed, providing direct evidence for the proposed mechanism for this technique. This suggests that the peptide passes through a transition from the cubic QII phase, via an L? phase to the lamellar crystalline Lc phase with similar layered spacing. When high protein loading was possible, the lamellar crystalline Lc phase of the peptide in the single crystals was observed. These findings show the mechanism of in meso crystallization for the first time from the perspective of integral membrane proteins.
Asunto(s)
Cristalización/métodos , Membrana Dobles de Lípidos/química , Glicéridos/química , Difracción de Rayos XRESUMEN
The first steps towards top-down morphology control in micellar self-assembly are introduced. Kinetically stable micelles are formed from block copolymers (BCPs) using continuous flow techniques by turbulent mixing of water with a THF solution of polymers. In this way, particle shape and size can be altered from spheres to ellipsoids solely via tuning of mixing parameters from a single BCP.
RESUMEN
Long-chain amidopropyl betaines are known for their ability to self-assemble into viscoelastic wormlike micellar structures. Here, we explore the effect of tailgroup molecular architecture on this process, comparing five molecules, each with C18 chains but different levels of unsaturation and branching. The surfactants are synthesized from stearic, oleic, linoleic, linolenic, and isostearic acids. The self-assembly of these molecules in aqueous solutions is explored using small- and ultra-small-angle neutron scattering (SANS and USANS). It is seen that optimum wormlike micelle formation is achieved for the oleic-chained surfactant, and the alignment of self-assembled structures is further explored using rheo-SANS. The more highly unsaturated molecules form rodlike micelles, whereas the stearic-tailed molecule shows a pronounced Krafft point and the isostearic-chained surfactant is entirely water-insoluble. These results demonstrate the critical importance of tailgroup geometry on surfactant properties and self-assembly for this industrially important class of surfactants.
Asunto(s)
Betaína/química , Micelas , Tensoactivos/química , Estructura Molecular , Dispersión del Ángulo Pequeño , Agua/químicaRESUMEN
Electronic graft copolymers with conjugated polymer backbones are emerging as promising materials for various organic electronics. These materials combine the advantages of organic electronic materials, such as molecular tunability of opto-electronic and electrochemical properties, with solution processability and other 'designer' physical and mechanical properties imparted through the addition of grafted polymer side chains. Future development of such materials with complex molecular architecture requires a better understanding of the effect of molecular parameters, such as side chain length, on the structure and, in turn, on the electronic properties. In this study, poly(thiophene)-graft-poly(acrylate urethane) (PTh-g-PAU) was examined as a model system and we investigate the effect of side chain length on the overall shape and size in solution. Furthermore, the changes in the swelling behaviour of the graft copolymer thin films help in understanding their electrochemical redox properties.
RESUMEN
A diverse range of molecular surfactants and polymers have been incorporated into aqueous graphene oxide (GO) and reduced graphene oxide (rGO) dispersions in order to understand the complex relationship between surface chemistry, surface forces and interfacial thermodynamics of these materials with typical amphiphiles. Surfactant additives were systematically varied in terms of their charge and hydrophobicity to reveal important structure-function relationships affecting adsorption and interaction with GO and rGO surfaces. Small-angle (and ultra small-angle) neutron scattering was employed to examine and monitor the interactions and self-assembly in each system. Charge was found to be the overriding factor driving adsorption, as cationic surfactants very readily adsorbed to both GO and rGO, whereas anionic surfactants gave little to no evidence of adsorption despite possessing hydrophobic tail-groups. Molecules of neutral charge such as nonionic and zwitterionic surfactants as well as neutral polymers also showed strong affinities for GO and rGO, indicating that dispersion and dipole (induction polarisation) interactions also play a significant role in adsorption with these materials. Modelling the neutron data revealed in many cases a q-2 slope in the low q and ultra low q regions, indicating that scattering was occurring from large, flat surfaces (lamellae or bilayers), suggesting an effective flattening of the sheets in dispersion. The results presented thus help to form a roadmap for the behaviour of GO and rGO with surfactants and polymers, relevant to adsorption, stabilisation, formulation and coating in aqueous environments as adsorbent and functional materials.
RESUMEN
Lamellar liquid crystals comprising oil, water and surfactant(s) were formulated and analysed in order to examine how these materials responded to the inclusion of inorganic nanoparticles, in terms of their structural and rheological characteristics. Lamellar phases were formed from mixtures of water, para-xylene and Triton X-100, and analysis was performed via small-angle neutron scattering (SANS), polarising light microscopy (PLM), and amplitude and viscosity sweeps. The partial replacement of Triton X-100 with oleic acid appeared to cause an increase in bilayer thickness, attributed to less efficient packing of the different molecules. Addition of oleic acid also appeared to cause both a loss in lamellar repeat ordering, attributed to heterogeneity of the bilayers, and a rise in long range order, potentially caused by the stiffer bilayers. Adding silica nanoparticles of different size and surface chemistry caused a stiffening of the samples at the expense of a longer-range lamellar repeat order. This strengthening is attributed to aggregation at the domain boundaries, and it was found that hydrophobic particles tended to form stronger aggregates while for larger particles (20 nm as opposed to 10 nm) aggregation was apparently reversible. These results give a more comprehensive understanding of how to reliably control the structural and rheological properties of lamellar liquid crystals, and emphasise the importance of the size and surface chemistry of any inclusions, for applications in cosmetics, drug delivery, and microfluidics.
RESUMEN
MOTIVATION: Small angle X-ray scattering (SAXS) is an established method for studying biological macromolecules in solution, whereby the experimental scattering patterns relate to the quaternary and tertiary structure of the macromolecule. Here we present DARA, a web-server, that queries over 150 000 scattering profiles pre-computed from the high resolution models of macromolecules and biological assemblies in the Protein Data Bank, to rapidly find nearest neighbours of a given experimental or theoretical SAXS pattern. Identification of the best scattering equivalents provides a straightforward and automated way of structural assessment of macromolecules based on a SAXS profile. DARA results are useful e.g. for fold recognition and finding of biologically active oligomers. AVAILABILITY AND IMPLEMENTATION: http://dara.embl-hamburg.de/.
Asunto(s)
Sustancias Macromoleculares/química , Dispersión del Ángulo Pequeño , Programas Informáticos , Difracción de Rayos X , Bases de Datos de Proteínas , InternetRESUMEN
Ezrin is a member of the ERM (ezrin-radixin-moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.
Asunto(s)
Proteínas del Citoesqueleto/química , Dicroismo Circular , Cristalografía por Rayos X , Dimerización , Conformación ProteicaRESUMEN
The interactions between ions and phospholipids are closely associated with the structures and functions of cell membrane. Instead of conventional aqueous systems, we systematically investigated the effects of inorganic ions on the self-assembly of lecithin, a zwitterionic phosphatidylcholine, in cyclohexane. Previous studies have shown that addition of inorganic salts with specific divalent and trivalent cations can transform lecithin organosols into organogels. In this study, we focused on the effect of monovalent alkali halides. Fourier transform infrared spectroscopy was used to demonstrate that the binding strength of the alkali cations with the phosphate of lecithin is in the order Li+ > Na+ > K+. More importantly, the cation-phosphate interaction is affected by the paired halide anions, and the effect follows the series I- > Br- > Cl-. The salts of stronger interactions with lecithin, including LiCl, LiBr, LiI, and NaI, were found to induce cylindrical micelles sufficiently long to form organogels, while others remain organosols. A mechanism based on the charge density of ions and the enthalpy change of the ion exchange between alkali halides and lecithin headgroup is provided to explain the contrasting interactions and the effectiveness of the salts to induce organogelation.
RESUMEN
The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , HumanosRESUMEN
Atopic dermatitis (AD) is a chronic relapsing inflammatory disease of the skin and is the most common paediatric dermatological condition. While no cure is available, it can be treated effectively if adherence to a therapeutic plan is maintained. Poor adherence to treatment is common in AD and can lead to treatment failure, which has significant impacts on the patient, family and society. A comprehensive literature search was conducted to identify factors that contribute to poor treatment adherence in childhood AD and to identify possible strategies to remedy these. Identified factors leading to poor treatment adherence include: complexity of treatment regimen, lack of knowledge, impaired quality of life, dissatisfaction with treatment strategies, infrequent follow up, corticosteroid phobia and the use of complementary and alternative medicine. Effective strategies to increase treatment adherence include: caregiver education and utilisation of education adjuncts, optimisation of the patient/caregiver-clinician relationship, early and frequent follow up and improvement of patient and caregiver quality of life.