Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Macromol Rapid Commun ; 40(11): e1900019, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30932256

RESUMEN

Additive manufacturing via melt electrowriting (MEW) can create ordered microfiber scaffolds relevant for bone tissue engineering; however, there remain limitations in the adoption of new printing materials, especially in MEW of biomaterials. For example, while promising composite formulations of polycaprolactone with strontium-substituted bioactive glass have been processed into large or disordered fibres, from what is known, biologically-relevant concentrations (>10 wt%) have never been printed into ordered microfibers using MEW. In this study, rheological characterization is used in combination with a predictive mathematical model to optimize biomaterial formulations and MEW conditions required to extrude various PCL and PCL/SrBG biomaterials to create ordered scaffolds. Previously, MEW printing of PCL/SrBG composites with 33 wt% glass required unachievable extrusion pressures. The composite formulation is modified using an evaporable solvent to reduce viscosity 100-fold to fall within the predicted MEW pressure, temperature, and voltage tolerances, which enabled printing. This study reports the first fabrication of reproducible, ordered high-content bioactive glass microfiber scaffolds by applying predictive modeling.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Poliésteres/química , Estroncio/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Viscosidad
2.
Front Bioeng Biotechnol ; 11: 1125060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970616

RESUMEN

Introduction and Methods: Chronic wounds are a major healthcare problem, but their healing may be improved by developing biomaterials which can stimulate angiogenesis, e.g. by activating the Hypoxia Inducible Factor (HIF) pathway. Here, novel glass fibres were produced by laser spinning. The hypothesis was that silicate glass fibres that deliver cobalt ions will activate the HIF pathway and promote the expression of angiogenic genes. The glass composition was designed to biodegrade and release ions, but not form a hydroxyapatite layer in body fluid. Results and Discussion: Dissolution studies demonstrated that hydroxyapatite did not form. When keratinocyte cells were exposed to conditioned media from the cobalt-containing glass fibres, significantly higher amounts of HIF-1α and Vascular Endothelial Growth Factor (VEGF) were measured compared to when the cells were exposed to media with equivalent amounts of cobalt chloride. This was attributed to a synergistic effect of the combination of cobalt and other therapeutic ions released from the glass. The effect was also much greater than the sum of HIF-1α and VEGF expression when the cells were cultured with cobalt ions and with dissolution products from the Co-free glass, and was proven to not be due to a rise in pH. The ability of the glass fibres to activate the HIF-1 pathway and promote VEGF expression shows the potential for their use in chronic wound dressings.

3.
Biomater Res ; 25(1): 1, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33451366

RESUMEN

BACKGROUND: Bioactive glasses are traditionally associated with bonding to bone through a hydroxycarbonate apatite (HCA) surface layer but the release of active ions is more important for bone regeneration. They are now being used to deliver ions for soft tissue applications, particularly wound healing. Cobalt is known to simulate hypoxia and provoke angiogenesis. The aim here was to develop new bioactive glass compositions designed to be scaffold materials to locally deliver pro-angiogenic cobalt ions, at a controlled rate, without forming an HCA layer, for wound healing applications. METHODS: New melt-derived bioactive glass compositions were designed that had the same network connectivity (mean number of bridging covalent bonds between silica tetrahedra), and therefore similar biodegradation rate, as the original 45S5 Bioglass. The amount of magnesium and cobalt in the glass was varied, with the aim of reducing or removing calcium and phosphate from the compositions. Electrospun poly(ε-caprolactone)/bioactive glass composites were also produced. Glasses were tested for ion release in dissolution studies and their influence on Hypoxia-Inducible Factor 1-alpha (HIF-1α) and expression of Vascular Endothelial Growth Factor (VEGF) from fibroblast cells was investigated. RESULTS: Dissolution tests showed the silica rich layer differed depending on the amount of MgO in the glass, which influenced the delivery of cobalt. The electrospun composites delivered a more sustained ion release relative to glass particles alone. Exposing fibroblasts to conditioned media from these composites did not cause a detrimental effect on metabolic activity but glasses containing cobalt did stabilise HIF-1α and provoked a significantly higher expression of VEGF (not seen in Co-free controls). CONCLUSIONS: The composite fibres containing new bioactive glass compositions delivered cobalt ions at a sustained rate, which could be mediated by the magnesium content of the glass. The dissolution products stabilised HIF-1α and provoked a significantly higher expression of VEGF, suggesting the composites activated the HIF pathway to stimulate angiogenesis.

4.
Acta Biomater ; 57: 449-461, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28457960

RESUMEN

A challenge in using bioactive melt-derived glass in bone regeneration is to produce scaffolds with interconnected pores while maintaining the amorphous nature of the glass and its associated bioactivity. Here we introduce a method for creating porous melt-derived bioactive glass foam scaffolds with low silica content and report in vitro and preliminary in vivo data. The gel-cast foaming process was adapted, employing temperature controlled gelation of gelatin, rather than the in situ acrylic polymerisation used previously. To form a 3D construct from melt derived glasses, particles must be fused via thermal processing, termed sintering. The original Bioglass® 45S5 composition crystallises upon sintering, altering its bioactivity, due to the temperature difference between the glass transition temperature and the crystallisation onset being small. Here, we optimised and compared scaffolds from three glass compositions, ICIE16, PSrBG and 13-93, which were selected due to their widened sintering windows. Amorphous scaffolds with modal pore interconnect diameters between 100-150µm and porosities of 75% had compressive strengths of 3.4±0.3MPa, 8.4±0.8MPa and 15.3±1.8MPa, for ICIE16, PSrBG and 13-93 respectively. These porosities and compressive strength values are within the range of cancellous bone, and greater than previously reported foamed scaffolds. Dental pulp stem cells attached to the scaffold surfaces during in vitro culture and were viable. In vivo, the scaffolds were found to regenerate bone in a rabbit model according to X-ray micro tomography imaging. STATEMENT OF SIGNIFICANCE: This manuscript describes a new method for making scaffolds from bioactive glasses using highly bioactive glass compositions. The glass compositions have lower silica content that those that have been previously made into amorphous scaffolds and they have been designed to have similar network connectivity to that of the original (and commercially used) 45S5 Bioglass. The aim was to match Bioglass' bioactivity. The scaffolds retain the amorphous nature of bioactive glass while having an open pore structure and compressive strength similar to porous bone (the original 45S5 Bioglass crystallises during sintering, which can cause reduced bioactivity or instability). The new scaffolds showed unexpectedly rapid bone regeneration in a rabbit model.


Asunto(s)
Regeneración Ósea , Cerámica/química , Pulpa Dental/metabolismo , Vidrio/química , Células Madre/metabolismo , Andamios del Tejido/química , Animales , Línea Celular , Pulpa Dental/patología , Femenino , Humanos , Porosidad , Conejos , Células Madre/patología
5.
Data Brief ; 7: 923-6, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27081669

RESUMEN

Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period.

6.
Acta Biomater ; 30: 319-333, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26563472

RESUMEN

In this study, polycaprolactone (PCL)-based composite scaffolds containing 50wt% of 45S5 Bioglass(®) (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using an additive manufacturing technique for bone tissue engineering purposes. The PCL scaffolds were surface coated with calcium phosphate (CaP) to enable further comparison of the osteoinductive potential of different scaffolds: PCL (control), PCL/CaP-coated, PCL/50-45S5 and PCL/50-SrBG scaffolds. The PCL/50-45S5 and PCL/50-SrBG composite scaffolds were reproducibly manufactured with a morphology highly resembling that of PCL only scaffolds. However, 50wt% loading of the bioactive glass (BG) particles into the PCL bulk decreased the scaffold's compressive Young's modulus. Coating of PCL scaffolds with CaP had a negligible effect on the scaffold's porosity and compressive Young's modulus. When immersed in culture media, BG dissolution ions (Si and Sr) were detected for up to 10weeks in the immersion media and surface precipitates were formed on both PCL/50-45S5 and PCL/50-SrBG scaffolds' surfaces, indicating good in vitro bioactivity. In vitro cell studies were conducted using sheep bone marrow stromal cells (BMSCs) under non-osteogenic or osteogenic conditioned media, and under static or dynamic culture environments. All scaffolds were able to support cell adhesion, growth and proliferation. However, when cultured in non-osteogenic media, only PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds showed an up-regulation of osteogenic gene expression. Additionally, under a dynamic culture environment, the rate of cell growth, proliferation and osteoblast-related gene expression was enhanced across all scaffold groups. Subsequently, PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds, with or without seeded cells, were implanted subcutaneously into nude rats for the evaluation of osteoinductivity potential. After 8 and 16weeks, host tissue infiltrated well into the scaffolds, but no mature bone formation was observed in any scaffolds groups. STATEMENT OF SIGNIFICANCE: This novelty of this research work is that it provide a comprehensive comparison, both in vitro and in vivo, between 3 different composite materials widely used in the field of bone tissue engineering for their bone regeneration capabilities. The materials used in this study include polycaprolactone, 45S5 Bioglass, strontium-substituted bioactive glass and calcium phosphate. Additionally, the composite materials were fabricated into the form of 3D scaffolds using additive manufacturing technique, a widely used technique in tissue engineering.


Asunto(s)
Fosfatos de Calcio , Cerámica , Materiales Biocompatibles Revestidos , Osteogénesis/efectos de los fármacos , Poliésteres , Andamios del Tejido/química , Animales , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cerámica/química , Cerámica/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Poliésteres/química , Poliésteres/farmacología , Ratas , Ratas Desnudas , Ovinos , Propiedades de Superficie
7.
J Mater Chem B ; 4(36): 6032-6042, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32263492

RESUMEN

Bioglass® was the first synthetic material capable of bonding with bone without fibrous encapsulation, and fulfils some of the criteria of an ideal synthetic bone graft. However, it is brittle and toughness is required. Here, we investigated hybrids consisting of co-networks of high cross-linking density polymethacrylate and silica (class II hybrid) as a potential new generation of scaffold materials. Poly(3-(methoxysilyl)propyl methacrylate) (pTMSPMA) and tetraethyl orthosilicate (TEOS) were used as sol-gel precursors and hybrids were synthesised with different inorganic to organic ratios (Ih). The hybrids were nanoporous, with a modal pore diameter of 1 nm. At Ih = 50%, the release of silica was controlled by varying the molecular weight of pTMSPMA while retaining a specific surface area above 100 m2 g-1. Strain to failure increased to 14.2%, for Ih = 50% using a polymer of 30 kDa, compared to 4.5% for pure glass. The modulus of toughness (UT) increased from 0.73 (pure glass) to 2.64 GPa. Although, the hybrid synthesised in this report did not contain calcium, pTMSPMA/SiO2 hybrid was found to nucleate bone-like mineral on its surface after 1 week of immersion in simulated body fluid (SBF), whereas pure silica sol-gel glass did not. This increase in apatite forming ability was due to the ion-dipole complexation of calcium with the ester moieties of the polymer that were exposed after release of soluble silica from TEOS. No adverse cytotoxicity for MC3T3-E1 osteoblast-like cells was detected and improved cell attachment was observed, compared to a pure silica gel. pTMSPMA/SiO2 hybrids have potential for the regeneration of hard tissue as they overcome the major drawbacks of pure inorganic substrates while retaining cell attachment.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda