RESUMEN
We herein report the optimization and application of silver cationization (Ag+) in combination with laser desorption ionization (LDI) ultrahigh-resolution mass spectrometry (UHR-MS) to determine the structures of the sulfur-containing compounds present in heavy crude oil. A number of sulfur-containing model compounds were used to optimize the positive-ion mode LDI-MS conditions in the presence of a silver-complexing agent. Under the optimized LDI conditions, sulfur-rich heavy oil fractions were treated with the silver salt, where Ag+ coordinated with the sulfur atoms to speciate the sulfur species. The obtained results suggested that benzothiophenic, naphtheno-non-aromatic sulfides, and non-aromatic thiols were the major components present in the analyzed oil sample. Graphical abstract.
RESUMEN
Extensive sample preparation procedures are required to analyze natural organic matter (NOM) in soil and sediment samples due to the mineral matrix. The preparation procedure not only requires a large amount of sample (typically more than 50 mg), but NOM extraction is frequently incomplete. In this study, 2-5 µg of solid NOM or 500 µg of unprocessed soil samples were fixed on a metal plate using double-sided adhesive tape and analyzed directly using laser desorption ionization (LDI) and ultrahigh resolution mass spectrometry (UHR-MS). Most of the peaks reported in previous LDI UHR-MS studies using NOM solutions were observed, and an additional â¼2200 unique peaks were found by analyzing the fulvic acids direct solid phase. Differences in the molecular composition of NOM in solid samples were seen clearly with minimum sample preparation. Lignin- and tannin-type molecules were detected in both Elliott soil and topsoil from Kyungpook National University campus. The data presented in this study demonstrate a proof-of-principle that highly sensitive, direct, molecular level analysis of solid-phase NOM from unprocessed soil samples and minimum sample preparation is possible.
RESUMEN
In this work, laser desorption ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (LDI-FTICRMS) was used to investigate the molecular composition of a peat fire and laboratory heated soil organic matter (SOM). SOM isolated from soils obtained from unburned and burned sites at Central Kalimantan, Indonesia, were analyzed with LDI-FTICRMS. About 7500 peaks were found and assigned with molecular formulas for each mass spectrum. SOM isolated from fire-affected soil sites are relatively more abundant in low oxygenated classes (e.g., O1-O5) and thermally stable compounds, including condensed hydrocarbon and nitrogen heterocyclic compounds. Abundances of highly condensed hydrocarbon compounds with carbon number > 30 were increased for the fire-affected SOM. In vivo heating experiments were conducted for SOM extracted from unburned sites, and the prepared SOMs were analyzed with LDI-FTICRMS. Overall, the same trend of change at the molecular level was observed from both the laboratory heated and the peat fire-affected SOM samples. In addition, it was observed that heat caused the degradation of SOM, generating lignin and tannin-type molecules. It was hypothesized that they were formed by thermal degradation of high molecular weight SOM. All the information presented in this study was obtained by consuming ~ 5 µg of sample. Therefore, this study shows that LDI-FTICRMS is a sensitive analytical technique that is effective in obtaining molecular level information of SOM. Graphical abstract.
Asunto(s)
Ciclotrones , Análisis de Fourier , Espectrometría de Masas/métodos , Suelo/química , Incendios , IndonesiaRESUMEN
Recently, the growing health awareness of society on the utilization of fabrics has led to an increasing demand for natural-based antibacterial textiles. Lignin, a generous polyphenol compound in nature, is capable of preventing bacterial growth; in particular, it dwells bacteria closely together on human skin, such as Staphylococcus epidermidis, Bacillus subtilis, Propionibacterium acnes, and Staphylococcus aureus. However, the antibacterial properties of lignin are limited by factors such as the lignin concentration, source, and type of bacteria. This study aimed to evaluate the potency of lignin as an antibacterial agent for textiles. Moreover, the thermal properties and wettability of the textile after lignin coating were also investigated. This study showed that lignin isolation methods significantly contributed to the inhibition of bacterial growth in the clear zone diameter. In addition, the lignin structure, lignin concentration, and type of bacteria had notably different antibacterial effects. SEM images showed that lignin was successfully coated on the fiber, and the antibacterial textile was successfully fabricated with clear zones in the range of 0.1-0.5 cm against four different bacteria. Lignin did not significantly improve the thermal stability of the textile, as proven by the TGA results. After the HDTMS coating by dispersion method, the wettability of the lignin-textile improved to that of the hydrophobic material, with a contact angle greater than 119.05° with excellent antibacterial properties (clear zone of 0.1-0.43 cm).
Asunto(s)
Acacia , Antibacterianos , Interacciones Hidrofóbicas e Hidrofílicas , Lignina , Textiles , Lignina/química , Lignina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Acacia/química , Humectabilidad , Pruebas de Sensibilidad Microbiana , Bacterias/efectos de los fármacos , TermogravimetríaRESUMEN
This study utilized liquid chromatography (LC) alongside Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to explore the dyes and chemical contaminants in Loji River, Indonesia. We tentatively identified a total of 655 contaminants at various confidence level, subsequently classifying them into 22 distinct categories. Of the 54 dyes we detected, 12 corresponded with entries in our specialized in-house database. These 12 dyes were further confirmed by reference standards, matching both retention time (RT) and MS/MS spectra. LC-FT-ICR MS data showed that dyes from printing batik and textile industries are key contributors to river pollution. Particularly noteworthy were two sample locations that displayed substantial contamination, predominantly from azoic and reactive dyes. Additionally, pharmaceuticals were identified as one of the most frequently occurring contaminants, underscoring the inadequacies in the area's sewage management. To corroborate these findings, we conducted physicochemical, phytotoxicity, and acute toxicity tests, all of which verified the harmful effects of the Loji River's water on both the local flora and human populations. Notably, water samples that tested positive for dye contamination exhibited elevated toxicity levels. To the best of our knowledge, this study is pioneering in its molecular-level investigation of dye contamination in Southeast Asian rivers. Our results accentuate the pressing need for both targeted and non-targeted screening methods to identify contaminants in the surface waters of developing nations.
Asunto(s)
Colorantes , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Indonesia , Ríos/química , Colorantes/análisis , Colorantes/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Análisis de Fourier , Humanos , Espectrometría de MasasRESUMEN
In this study, bioplastics with antioxidant and UV protection properties based on tannin and PVA were created for packaging uses. Using a hot water extraction method at various extraction temperatures (60-100 °C), tannins were removed from the bark of Acacia mangium. Tannins with the best antioxidant activity were extracted at 80 °C. In order to create bioplastic formulations (PVA/Tannins), the extract is then employed. The non-heating bioplastic method's preparation (M3) stage produced the highest levels of antioxidant activity. Therefore, subsequent tests were conducted using the non-heating method (M3). On the opacity, UV protective activity, antioxidant capacity, mechanical strength, thermal stability, and water vapor permeability of the resultant bioplastics, the impact of tannin concentration (0.1-0.5 g) was examined. The findings of the experiments demonstrate that PVA/Tannin bioplastics are less transparent than pure PVA. The PVA/tannin bioplastics that are formed, on the whole, show strong antioxidant and UV protection action. Comparing PVA/Tannin bioplastics to pure PVA also revealed a small improvement in thermal stability and tensile strength. In PVA bioplastics with resistant tannins, moisture content was marginally greater even at low tannin concentrations (0.1 g). Based on the findings, bioplastics made from PVA and the tannin A. mangium have the potential to be used to create packaging that is UV and active antioxidant resistant. It can be applied as the second (inner) layer of the primary packaging to protect food freshness and nutrition due to their antioxidant activity.
Asunto(s)
Acacia , Taninos , Taninos/análisis , Antioxidantes/farmacología , Embalaje de Alimentos , Extractos Vegetales/farmacologíaRESUMEN
No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-NN-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.
Asunto(s)
Compuestos Azo , Trametes , Simulación del Acoplamiento Molecular , Biodegradación Ambiental , Compuestos Azo/toxicidad , Compuestos Azo/metabolismo , Colorantes/química , Lacasa/químicaRESUMEN
This study assessed the applicability of artificial neural networks (ANNs) as a tool to identify compounds contributing to compositional differences in coal-contaminated soils. An artificial neural network model was constructed from laser desorption ionization ultrahigh-resolution mass spectra obtained from coal contaminated soils. A good correlation (R2 = 1.00 for model and R2 = 0.99 for test) was observed between the measured and predicted values, thus validating the constructed model. To identify chemicals contributing to the coal contents of the soils, the weight values of the constructed model were evaluated. Condensed hydrocarbon and low oxygen containing compounds were found to have larger weight values and hence they were the main contributors to the coal contents of soils. In contrast, compounds identified as lignin did not contribute to the coal contents of soils. These findings were consistent with the conventional knowledge on coal and results from the conventional partial least square method. Therefore, we concluded that the weight interpretation following ANN analysis presented herein can be used to identify compounds that contribute to the compositional differences of natural organic matter (NOM) samples.
Asunto(s)
Contaminantes del Suelo , Suelo , Carbón Mineral/análisis , Monitoreo del Ambiente , Espectrometría de Masas , Redes Neurales de la Computación , Suelo/química , Contaminantes del Suelo/análisisRESUMEN
The efficient isolation process and understanding of lignin properties are essential to determine key features and insights for more effective lignin valorization as a renewable feedstock for the production of bio-based chemicals including wood adhesives. This study successfully used dilute acid precipitation to recover lignin from black liquor (BL) through a single-step and ethanol-fractionated-step, with a lignin recovery of ~35% and ~16%, respectively. The physical characteristics of lignin, i.e., its morphological structure, were evaluated by scanning electron microscopy (SEM). The chemical properties of the isolated lignin were characterized using comprehensive analytical techniques such as chemical composition, solubility test, morphological structure, Fourier-transform infrared spectroscopy (FTIR), 1H and 13C Nuclear Magnetic Resonance (NMR), elucidation structure by pyrolysis-gas chromatography-mass spectroscopy (Py-GCMS), and gel permeation chromatography (GPC). The fingerprint analysis by FTIR detected the unique peaks corresponding to lignin, such as C=C and C-O in aromatic rings, but no significant differences in the fingerprint result between both lignin. The 1H and 13C NMR showed unique signals related to functional groups in lignin molecules such as methoxy, aromatic protons, aldehyde, and carboxylic acid. The lower insoluble acid content of lignin derived from fractionated-step (69.94%) than single-step (77.45%) correlated to lignin yield, total phenolic content, solubility, thermal stability, and molecular distribution. It contradicted the syringyl/guaiacyl (S/G) units' ratio where ethanol fractionation slightly increased syringyl unit content, increasing the S/G ratio. Hence, the fractionation step affected more rupture and pores on the lignin morphological surface than the ethanol-fractionated step. The interrelationships between these chemical and physicochemical as well as different isolation methods were investigated. The results obtained could enhance the wider industrial application of lignin in manufacturing wood-based composites with improved properties and lower environmental impact.
RESUMEN
Each year, 50 to 70 million tonnes of lignin are produced worldwide as by-products from pulp industries and biorefineries through numerous processes. Nevertheless, about 98% of lignin is directly burnt to produce steam to generate energy for the pulp mills and only a handful of isolated lignin is used as a raw material for the chemical conversion and for the preparation of various substances as well as modification of lignin into nanomaterials. Thus, thanks to its complex structure, the conversion of lignin to nanolignin, attracting growing attention and generating considerable interest in the scientific community. The objective of this review is to provide a complete understanding and knowledge of the synthesis methods and functionalization of various lignin nanoparticles (LNP). The characterization of LNP such as structural, thermal, molecular weight properties together with macromolecule and quantification assessments are also reviewed. In particular, emerging applications in different areas such as UV barriers, antimicrobials, drug administration, agriculture, anticorrosives, the environment, wood protection, enzymatic immobilization and others were highlighted. In addition, future perspectives and challenges related to the development of LNP are discussed.
Asunto(s)
LigninaRESUMEN
In this work, comprehensive lists of internal calibrants for accurate mass determination of molecules in crude oils, natural organic matter, and soil as well as their preparation recipes are presented. The lists include various sets of chemicals for positive- and negative-ion mode electrospray ionization, atmospheric pressure chemical ionization, atmospheric pressure photoionization, and laser desorption ionization. The chemicals were chosen based on their solvent compatibility, ionization efficiency, and accessibility. The sample preparation process was optimized for each ionization method and type of sample. The lists include detailed information on preparation solvent, concentrations, and mixing ratios of sample and calibrants. Internal calibration using the information in the lists results in successful calibration, and all the data presented in this study show root-mean-square errors between the theoretical and obtained m/z numbers of less than 0.4 ppm. The information presented in this study provides an important guideline for researchers working on complex mixtures with ultrahigh-resolution mass spectrometry.
RESUMEN
Biodegradation and metabolic pathways of three anthraquinone dyes, Reactive Blue 4 (RB4), Remazol Brilliant Blue - R (RBBR), and Acid Blue 129 (AB129) by Trametes hirsuta D7 fungus immobilized in light expanded clay aggregate (LECA) were investigated. Morphological characteristics observed with scanning electron microscope (SEM) showed successful immobilization of the fungus in LECA. Based on UV absorbance measurement, immobilized T. hirsuta D7 effectively degraded 90%, 95%, and 96% of RB4, RBBR and AB129, respectively. Metabolites were identified with high-resolution mass spectrometry (HRMS) and degradation pathway of the dyes by T. hirsuta D7 was proposed. Toxicity assay on human dermal fibroblast (HDF) showed that anthraquinone dyes exhibits significant toxicity of 35%, 40%, and 34% reduction of cell viability by RB4, RBBR, and AB129, respectively. Fungal treatment resulted in an abatement of the toxicity and cell viability was increased up to 94%. The data clearly showed the effectiveness of immobilized T. hirsuta D7 in LECA on detoxification of anthraquinone dyes. This study provides potential and fundamental understanding of wastewater treatment using the newly isolated fungus T. hirsuta D7.