RESUMEN
OBJECTIVES: This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the benefits and harms of vestibular stimulation compared to standard care or non-vestibular stimulation for physical and neurological development in preterm infants. To assess whether the effects of vestibular stimulation differ according to gestational age at birth; the type, frequency, and duration of the intervention; and settings, such as the country where the study is conducted.
Asunto(s)
Desarrollo Infantil , Recien Nacido Prematuro , Humanos , Recién Nacido , Ensayos Clínicos Controlados Aleatorios como Asunto , Vestíbulo del Laberinto , Edad GestacionalRESUMEN
OBJECTIVES: This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of olfactory stimulation with different odorants in the NICU for promoting development and preventing morbidity in preterm infants.
Asunto(s)
Recien Nacido Prematuro , Odorantes , Humanos , Recien Nacido Prematuro/crecimiento & desarrollo , Recién Nacido , Odorantes/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto , Olfato/fisiología , Desarrollo Infantil , Enfermedades del Prematuro/prevención & controlRESUMEN
OBJECTIVES: This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the benefits and harms of multisensory stimulation compared to any single sensory intervention or standard care for physical and neurological development in preterm infants.
Asunto(s)
Desarrollo Infantil , Recien Nacido Prematuro , Humanos , Recien Nacido Prematuro/crecimiento & desarrollo , Recién Nacido , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Física/métodosRESUMEN
OBJECTIVE: To describe current treatment practices of preterm infants with early hypoxemic respiratory failure (HRF) and pulmonary hypertension (PH) and their association with patient outcomes. STUDY DESIGN: We developed a prospective, observational, multicenter clinical registry of preterm newborns <34 weeks' gestation with HRF and PH, based on either clinical or echocardiographic evidence during the first 72 hours of life, from 28 neonatal intensive care units in the US from 2017 through 2022. The primary end point was mortality among those who did or did not receive PH-targeted treatment, and the secondary end points included comparisons of major morbidities. Variables were compared using t tests, Wilcoxon rank-sum tests, Fisher exact tests, and χ² tests. RESULTS: We analyzed the results of 224 preterm infants enrolled in the registry. Of which, 84% (188/224) received PH-targeted treatment, most commonly inhaled nitric oxide (iNO). Early mortality in this cohort was high, as 33% (71/224) of this sample died in the first month of life, and 77% of survivors (105/137) developed bronchopulmonary dysplasia. Infants who received PH-targeted treatment had higher oxygenation indices at the time of enrollment (28.16 [IQR: 13.94, 42.5] vs 15.46 [IQR: 11.94, 26.15]; P = .0064). Patient outcomes did not differ between those who did or did not receive PH-targeted therapy. CONCLUSIONS: Early-onset HRF with PH in preterm infants is associated with a high early mortality and a high risk of developing bronchopulmonary dysplasia. iNO is commonly used to treat early-onset PH in preterm infants with HRF. In comparison with untreated infants with lower oxygenation indices, iNO treatment in severe PH may prevent poorer outcomes.
Asunto(s)
Displasia Broncopulmonar , Hipertensión Pulmonar , Insuficiencia Respiratoria , Lactante , Recién Nacido , Humanos , Recien Nacido Prematuro , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/tratamiento farmacológico , Hipertensión Pulmonar/tratamiento farmacológico , Estudios Prospectivos , Insuficiencia Respiratoria/terapia , Óxido Nítrico , Administración por InhalaciónRESUMEN
BACKGROUND: Blinding of treatment allocation from treating clinicians in neonatal randomised controlled trials can minimise performance bias, but its effectiveness is rarely assessed. METHODS: To examine the effectiveness of blinding a procedural intervention from treating clinicians in a multicentre randomised controlled trial of minimally invasive surfactant therapy versus sham treatment in preterm infants of gestation 25-28 weeks with respiratory distress syndrome. The intervention (minimally invasive surfactant therapy or sham) was performed behind a screen within the first 6 h of life by a 'study team' uninvolved in clinical care including decision-making. Procedure duration and the study team's words and actions during the sham treatment mimicked those of the minimally invasive surfactant therapy procedure. Post-intervention, three clinicians completed a questionnaire regarding perceived group allocation, with the responses matched against actual intervention and categorised as correct, incorrect, or unsure. Success of blinding was calculated using validated blinding indices applied to the data overall (James index, successful blinding defined as > 0.50), or to the two treatment allocation groups (Bang index, successful blinding: -0.30 to 0.30). Blinding success was measured within staff role, and the associations between blinding success and procedural duration and oxygenation improvement post-procedure were estimated. RESULTS: From 1345 questionnaires in relation to a procedural intervention in 485 participants, responses were categorised as correct in 441 (33%), incorrect in 142 (11%), and unsure in 762 (57%), with similar proportions for each of the response categories in the two treatment arms. The James index indicated successful blinding overall 0.67 (95% confidence interval (CI) 0.65-0.70). The Bang index was 0.28 (95% CI 0.23-0.32) in the minimally invasive surfactant therapy group and 0.17 (95% CI 0.12-0.21) in the sham arm. Neonatologists more frequently guessed the correct intervention (47%) than bedside nurses (36%), neonatal trainees (31%), and other nurses (24%). For the minimally invasive surfactant therapy intervention, the Bang index was linearly related to procedural duration and oxygenation improvement post-procedure. No evidence of such relationships was seen in the sham arm. CONCLUSION: Blinding of a procedural intervention from clinicians is both achievable and measurable in neonatal randomised controlled trials.
Asunto(s)
Recien Nacido Prematuro , Tensoactivos , Lactante , Humanos , Recién Nacido , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Apnea of prematurity is a common problem in preterm infants that may have significant consequences on their development. Methylxanthines (aminophylline, theophylline, and caffeine) are effective in the treatment of apnea of prematurity. Doxapram is used as a respiratory stimulant in cases refractory to the methylxanthine treatment. OBJECTIVES: To evaluate the benefits and harms of doxapram administration on the incidence of apnea and other short-term and longer-term clinical outcomes in preterm infants. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was March 2023. SELECTION CRITERIA: We included randomized controlled trials (RCTs) assessing the role of doxapram in prevention and treatment of apnea of prematurity and prevention of reintubation in preterm infants (less than 37 weeks' gestation). We included studies comparing doxapram with either placebo or methylxanthines as a control group, or when doxapram was used as an adjunct to methylxanthines and compared to methylxanthines alone as a control group. We included studies of doxapram at any dose and route. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were clinical apnea, need for positive pressure ventilation after initiation of treatment, failed apnea reduction after two to seven days, and failed extubation (defined as unable to wean from invasive intermittent positive pressure ventilation [IPPV] and extubate or reintubation for IPPV within one week). We used GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS: We included eight RCTs enrolling 248 infants. Seven studies (214 participants) provided data for meta-analysis. Five studied doxapram for treatment of apnea in preterm infants. Three studied doxapram to prevent reintubation in preterm infants. None studied doxapram in preventing apnea in preterm infants. All studies administered doxapram intravenously as continuous infusions. Two studies used doxapram as an adjunct to aminophylline compared to aminophylline alone and one study as an adjunct to caffeine compared to caffeine alone. When used to treat apnea, compared to no treatment, doxapram may result in a slight reduction in failed apnea reduction (risk ratio [RR] 0.45, 95% confidence interval [CI] 0.20 to 1.05; 1 study, 21 participants; low-certainty evidence). The evidence is very uncertain about the effect of doxapram on need for positive pressure ventilation after initiation of treatment (RR 0.31, 95% CI 0.01 to 6.74; 1 study, 21 participants; very low-certainty evidence). Doxapram may result in little to no difference in side effects causing cessation of therapy (0 events in both groups; risk difference [RD] 0.00, 95% CI -0.17 to 0.17; 1 study, 21 participants; low-certainty evidence). Compared to alternative treatment, the evidence is very uncertain about the effect of doxapram on failed apnea reduction (RR 1.35, 95% CI 0.53 to 3.45; 4 studies, 84 participants; very low-certainty evidence). The evidence is very uncertain about the effect of doxapram on need for positive pressure ventilation after initiation of treatment (RR 2.40, 95% CI 0.11 to 51.32; 2 studies, 37 participants; very-low certainty evidence; note 1 study recorded 0 events in both groups. Thus, the RR and CIs were calculated from 1 study rather than 2). Doxapram may result in little to no difference in side effects causing cessation of therapy (0 events in all groups; RD 0.00, 95% CI -0.15 to 0.15; 37 participants; 2 studies; low-certainty evidence). As adjunct therapy to methylxanthine, the evidence is very uncertain about the effect of doxapram on failed apnea reduction after two to seven days (RR 0.08, 95% CI 0.01 to 1.17; 1 study, 10 participants; very low-certainty evidence). No studies reported on clinical apnea, chronic lung disease at 36 weeks' postmenstrual age (PMA), death at any time during initial hospitalization, long-term neurodevelopmental outcomes in the three comparisons, and need for positive pressure ventilation and side effects when used as adjunct therapy to methylxanthine. In studies to prevent reintubation, when compared to alternative treatment, the evidence is very uncertain about the effect of doxapram on failed extubation (RR 0.43, 95% CI 0.10 to 1.83; 1 study, 25 participants; very low-certainty evidence). As adjunct therapy to methylxanthine, doxapram may result in a slight reduction in 'clinical apnea' after initiation of treatment (RR 0.36, 95% CI 0.13 to 0.98; 1 study, 56 participants; low-certainty evidence). Doxapram may result in little to no difference in failed extubation (RR 0.92, 95% CI 0.52 to 1.62; 1 study, 56 participants; low-certainty evidence). The evidence is very uncertain about the effect of doxapram on side effects causing cessation of therapy (RR 6.42, 95% CI 0.80 to 51.26; 2 studies, 85 participants; very low-certainty evidence). No studies reported need for positive pressure ventilation, chronic lung disease at 36 weeks' PMA, long-term neurodevelopmental outcomes in the three comparisons; failed extubation when compared to no treatment; and clinical apnea, death at any time during initial hospitalization, and side effects when compared to no treatment or alternative treatment. We identified two ongoing studies, one conducted in Germany and one in multiple centers in the Netherlands and Belgium. AUTHORS' CONCLUSIONS: In treating apnea of prematurity, doxapram may slightly reduce failure in apnea reduction when compared to no treatment and there may be little to no difference in side effects against both no treatment and alternative treatment. The evidence is very uncertain about the need for positive pressure ventilation when compared to no treatment or alternative treatment and about failed apnea reduction when used as alternative or adjunct therapy to methylxanthine. For use to prevent reintubation, doxapram may reduce apnea episodes when administered in adjunct to methylxanthine, but with little to no difference in failed extubation. The evidence is very uncertain about doxapram's effect on death when used as adjunct therapy to methylxanthine and about failed extubation when used as alternative or adjunct therapy to methylxanthine. There is a knowledge gap about the use of doxapram as a therapy to prevent apnea. More studies are needed to clarify the role of doxapram in the treatment of apnea of prematurity, addressing concerns about long-term outcomes. The ongoing studies may provide useful data.
Asunto(s)
Doxapram , Enfermedades Pulmonares , Recién Nacido , Humanos , Doxapram/uso terapéutico , Apnea/tratamiento farmacológico , Apnea/prevención & control , Cafeína/uso terapéutico , Aminofilina/uso terapéutico , Recien Nacido PrematuroRESUMEN
BACKGROUND: Free oxygen radicals have been implicated in the pathogenesis of bronchopulmonary dysplasia (BPD) in preterm infants. Superoxide dismutase (SOD) is a naturally occurring enzyme which provides a defense against such oxidant injury. Providing supplementary SOD has been tested in clinical trials to prevent BPD in preterm infants. OBJECTIVES: To determine the efficacy and safety of SOD in the prevention and treatment of BPD on mortality and other complications of prematurity in infants at risk for, or having BPD. SEARCH METHODS: We searched CENTRAL, PubMed, Embase, and three trials registers on 22 September 2022 together with reference checking, citation searching and contact with study authors to identify additional studies. SELECTION CRITERIA: Randomized, quasi-randomized and cluster-randomized controlled trials (RCTs) where the participants were preterm infants who had developed, or were at risk of developing BPD, and who were randomly allocated to receive either SOD (in any form, by any route, any dose, anytime) or placebo, or no treatment. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were BPD defined as an oxygen requirement at 28 days, BPD defined as oxygen at 36 weeks' postmenstrual age, neonatal mortality, mortality prior to discharge, and BPD or death at 36 weeks' postmenstrual age. We reported risk ratio (RR) and risk difference (RD) with 95% confidence intervals (CIs) for the dichotomous outcomes. We used GRADE to assess certainty of evidence for each outcome. MAIN RESULTS: We included three RCTs (380 infants) on SOD administration in preterm infants at risk for BPD, and no studies in preterm infants with evolving BPD / early respiratory insufficiency. The evidence is very uncertain about the effect of SOD on BPD defined as an oxygen requirement at 28 days (RR 1.09, 95% CI 0.94 to 1.26; RD 0.06, 95% CI -0.05 to 0.16, 1 study, 302 infants; I2 for RR and RD not applicable), BPD defined as oxygen at 36 weeks' postmenstrual age (RR 0.96, 95% CI 0.72 to 1.29; RD -0.01, 95% CI -0.11 to 0.09, 2 studies, 335 infants; I2 for RR and RD = 0%), neonatal mortality (RR 0.98, 95% CI 0.57 to 1.68; RD -0.00, 95% CI -0.08 to 0.07, 2 studies, 335 infants; I2 for RR and RD = 0%), and mortality prior to discharge (RR 1.20, 95% CI 0.53 to 2.71; RD 0.04, 95% CI -0.14 to 0.23, 2 studies, 78 infants; I2 for RR and RD = 0%). No studies reported BPD or death at 36 weeks' postmenstrual age. The evidence is very uncertain about the effect of SOD on retinopathy of prematurity any stage (RR 0.95, 95% CI 0.78 to 1.15; RD -0.03, 95% CI -0.15 to 0.08, 2 studies, 335 infants; I2for RR = 0%, I2 for RD = 8%), and severe retinopathy of prematurity (ROP) (RR 0.97, 95% CI 0.57 to 1.65; RD -0.01, 95% CI -0.10 to 0.09, 1 study, 244 infants; I2 for RR and RD not applicable). No studies reported moderate to severe neurodevelopmental outcome at 18 to 24 months. Certainty of evidence was very low for all outcomes. We identified no ongoing trials. AUTHORS' CONCLUSIONS: The evidence is very uncertain about the effect of SOD on BPD defined as an oxygen requirement at 28 days, BPD defined as oxygen at 36 weeks' postmenstrual age, neonatal mortality and mortality prior to discharge compared to placebo. No studies reported BPD or death at 36 weeks' postmenstrual age and need for supplemental oxygen. The evidence is very uncertain about the effect of SOD on retinopathy of prematurity any stage and severe retinopathy of prematurity. No studies reported moderate to severe neurodevelopmental outcome at 18 to 24 months. The effects of SOD in preterm infants has not been reported in any trial in the last few decades, considering that the most recent trial on SOD in preterm infants was conducted in 1997/1998, and no new studies are ongoing. In the light of the limited available evidence, new data from preclinical and observational studies are needed to justify the conduction of new RCTs. Observational studies might report how SOD is administered, including indication, dose and association with relevant outcomes such as mortality, BPD and long-term neurodevelopment.
Asunto(s)
Displasia Broncopulmonar , Retinopatía de la Prematuridad , Recién Nacido , Lactante , Humanos , Retinopatía de la Prematuridad/prevención & control , Displasia Broncopulmonar/prevención & control , Recien Nacido Prematuro , Oxígeno , Superóxido Dismutasa/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Very preterm infants often require respiratory support and are therefore exposed to an increased risk of bronchopulmonary dysplasia (chronic lung disease) and later neurodevelopmental disability. Caffeine is widely used to prevent and treat apnea (temporal cessation of breathing) associated with prematurity and facilitate extubation. Though widely recognized dosage regimes have been used for decades, higher doses have been suggested to further improve neonatal outcomes. However, observational studies suggest that higher doses may be associated with harm. OBJECTIVES: To determine the effects of higher versus standard doses of caffeine on mortality and major neurodevelopmental disability in preterm infants with (or at risk of) apnea, or peri-extubation. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, CINAHL, the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), and clinicaltrials.gov in May 2022. The reference lists of relevant articles were also checked to identify additional studies. SELECTION CRITERIA: We included randomized (RCTs), quasi-RCTs and cluster-RCTs, comparing high-dose to standard-dose strategies in preterm infants. High-dose strategies were defined as a high-loading dose (more than 20 mg of caffeine citrate/kg) or a high-maintenance dose (more than 10 mg of caffeine citrate/kg/day). Standard-dose strategies were defined as a standard-loading dose (20 mg or less of caffeine citrate/kg) or a standard-maintenance dose (10 mg or less of caffeine citrate/kg/day). We specified three additional comparisons according to the indication for commencing caffeine: 1) prevention trials, i.e. preterm infants born at less than 34 weeks' gestation, who are at risk for apnea; 2) treatment trials, i.e. preterm infants born at less than 37 weeks' gestation, with signs of apnea; 3) extubation trials: preterm infants born at less than 34 weeks' gestation, prior to planned extubation. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We evaluated treatment effects using a fixed-effect model with risk ratio (RR) for categorical data and mean, standard deviation (SD), and mean difference (MD) for continuous data. MAIN RESULTS: We included seven trials enrolling 894 very preterm infants (reported in Comparison 1, i.e. any indication). Two studies included infants for apnea prevention (Comparison 2), four studies for apnea treatment (Comparison 3) and two for extubation management (Comparison 4); in one study, indication for caffeine administration was both apnea treatment and extubation management (reported in Comparison 1, Comparison 3 and Comparison 4). In the high-dose groups, loading and maintenance caffeine doses ranged from 30 mg/kg to 80 mg/kg, and 12 mg/kg to 30 mg/kg, respectively; in the standard-dose groups, loading and maintenance caffeine doses ranged from 6 mg/kg to 25 mg/kg, and 3 mg/kg to 10 mg/kg, respectively. Two studies had three study groups: infants were randomized in three different doses (two of them matched our definition of high dose and one matched our definition of standard dose); high-dose caffeine and standard-dose caffeine were compared to theophylline administration (the latter is included in a separate review). Six of the seven included studies compared high-loading and high-maintenance dose to standard-loading and standard-maintenance dose, whereas in one study standard-loading dose and high-maintenance dose was compared to standard-loading dose and standard-maintenance dose. High-dose caffeine strategies (administration for any indication) may have little or no effect on mortality prior to hospital discharge (risk ratio (RR) 0.86, 95% confidence of interval (CI) 0.53 to 1.38; risk difference (RD) -0.01, 95% CI -0.05 to 0.03; I² for RR and RD = 0%; 5 studies, 723 participants; low-certainty evidence). Only one study enrolling 74 infants reported major neurodevelopmental disability in children aged three to five years (RR 0.79, 95% CI 0.51 to 1.24; RD -0.15, 95% CI -0.42 to 0.13; 46 participants; very low-certainty evidence). No studies reported the outcome mortality or major neurodevelopmental disability in children aged 18 to 24 months and 3 to 5 years. Five studies reported bronchopulmonary dysplasia at 36 weeks' postmenstrual age (RR 0.75, 95% CI 0.60 to 0.94; RD -0.08, 95% CI -0.15 to -0.02; number needed to benefit (NNTB) = 13; I² for RR and RD = 0%; 723 participants; moderate-certainty evidence). High-dose caffeine strategies may have little or no effect on side effects (RR 1.66, 95% CI 0.86 to 3.23; RD 0.03, 95% CI -0.01 to 0.07; I² for RR and RD = 0%; 5 studies, 593 participants; low-certainty evidence). The evidence is very uncertain for duration of hospital stay (data reported in three studies could not be pooled in meta-analysis because outcomes were expressed as medians and interquartile ranges) and seizures (RR 1.42, 95% CI 0.79 to 2.53; RD 0.14, 95% CI -0.09 to 0.36; 1 study, 74 participants; very low-certainty evidence). We identified three ongoing trials conducted in China, Egypt, and New Zealand. AUTHORS' CONCLUSIONS: High-dose caffeine strategies in preterm infants may have little or no effect on reducing mortality prior to hospital discharge or side effects. We are very uncertain whether high-dose caffeine strategies improves major neurodevelopmental disability, duration of hospital stay or seizures. No studies reported the outcome mortality or major neurodevelopmental disability in children aged 18 to 24 months and 3 to 5 years. High-dose caffeine strategies probably reduce the rate of bronchopulmonary dysplasia. Recently completed and future trials should report long-term neurodevelopmental outcome of children exposed to different caffeine dosing strategies in the neonatal period. Data from extremely preterm infants are needed, as this population is exposed to the highest risk for mortality and morbidity. However, caution is required when administering high doses in the first hours of life, when the risk for intracranial bleeding is highest. Observational studies might provide useful information regarding potential harms of the highest doses.
Asunto(s)
Displasia Broncopulmonar , Enfermedades del Prematuro , Niño , Humanos , Lactante , Recién Nacido , Apnea , Displasia Broncopulmonar/prevención & control , Cafeína , Recien Nacido Extremadamente PrematuroRESUMEN
BACKGROUND: Methylxanthines, including caffeine, theophylline, and aminophylline, work as stimulants of the respiratory drive, and decrease apnea of prematurity, a developmental disorder common in preterm infants. In particular, caffeine has been reported to improve important clinical outcomes, including bronchopulmonary dysplasia (BPD) and neurodevelopmental disability. However, there is uncertainty regarding the efficacy of caffeine compared to other methylxanthines. OBJECTIVES: To assess the effects of caffeine compared to aminophylline or theophylline in preterm infants at risk of apnea, with apnea, or in the peri-extubation phase. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, Epistemonikos, the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), and clinicaltrials.gov in February 2023. We also checked the reference lists of relevant articles to identify additional studies. SELECTION CRITERIA: Studies: randomized controlled trials (RCTs) and quasi-RCTs Participants: infants born before 34 weeks of gestation for prevention and extubation trials, and infants born before 37 weeks of gestation for treatment trials Intervention and comparison: caffeine versus theophylline or caffeine versus aminophylline. We included all doses and duration of treatment. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We evaluated treatment effects using a fixed-effect model with risk ratio (RR), risk difference (RD), and 95% confidence intervals (CI) for categorical data, and mean, standard deviation, and mean difference for continuous data. We used the GRADE approach to evaluate the certainty of evidence. MAIN RESULTS: We included 22 trials enrolling 1776 preterm infants. The indication for treatment was prevention of apnea in three studies, treatment of apnea in 13 studies, and extubation management in three studies. In three studies, there were multiple indications for treatment, and in one study, the indication for treatment was unclear. In 19 included studies, the infants had a mean gestational age between 28 and 32 weeks and a mean birth weight between 1000 g and 1500 g. One study's participants had a mean gestational age of more than 32 weeks, and two studies had participants with a mean birth weight of 1500 g or more. Caffeine administrated for any indication may result in little to no difference in all-cause mortality prior to hospital discharge compared to other methylxanthines (RR 1.12, 95% CI 0.68 to 1.84; RD 0.02, 95% CI -0.05 to 0.08; 2 studies, 396 infants; low-certainty evidence). Only one study enrolling 79 infants reported components of the outcome moderate to severe neurodevelopmental disability at 18 to 26 months. The evidence is very uncertain about the effect of caffeine on cognitive developmental delay compared to other methylxanthines (RR 0.17, 95% CI 0.02 to 1.37; RD -0.12, 95% CI -0.24 to 0.01; 1 study, 79 infants; very low-certainty evidence). The evidence is very uncertain about the effect of caffeine on language developmental delay compared to other methylxanthines (RR 0.76, 95% CI 0.37 to 1.58; RD -0.07, 95% CI -0.27 to 0.12; 1 study, 79 infants; very low-certainty evidence). The evidence is very uncertain about the effect of caffeine on motor developmental delay compared to other methylxanthines (RR 0.50, 95% CI 0.13 to 1.96; RD -0.07, 95% CI -0.21 to 0.07; 1 study, 79 infants; very low-certainty evidence). The evidence is very uncertain about the effect of caffeine on visual and hearing impairment compared to other methylxanthines. At 24 months of age, visual impairment was seen in 8 out of 11 infants and 10 out of 11 infants in the caffeine and other methylxanthines groups, respectively. Hearing impairment was seen in 2 out of 5 infants and 1 out of 1 infant in the caffeine and other methylxanthines groups, respectively. No studies reported the outcomes cerebral palsy, gross motor disability, and mental development. Compared to other methylxanthines, caffeine may result in little to no difference in BPD/chronic lung disease, defined as 28 days of oxygen exposure at 36 weeks' postmenstrual age (RR 1.40, 95% CI 0.92 to 2.11; RD 0.04, 95% CI -0.01 to 0.09; 3 studies, 481 infants; low-certainty evidence). The evidence is very uncertain about the effect of caffeine on side effects (tachycardia, agitation, or feed intolerance) leading to a reduction in dose or withholding of methylxanthines compared to other methylxanthines (RR 0.17, 95% CI 0.02 to 1.32; RD -0.29, 95% CI -0.57 to -0.02; 1 study, 30 infants; very low-certainty evidence). Caffeine may result in little to no difference in duration of hospital stay compared to other methylxanthines (median (interquartile range): caffeine 43 days (27.5 to 61.5); other methylxanthines 39 days (28 to 55)). No studies reported the outcome seizures. AUTHORS' CONCLUSIONS: Although caffeine has been shown to improve important clinical outcomes, in the few studies that compared caffeine to other methylxanthines, there might be little to no difference in mortality, bronchopulmonary dysplasia, and duration of hospital stay. The evidence is very uncertain about the effect of caffeine compared to other methylxanthines on long-term development and side effects. Although caffeine or other methylxanthines are widely used in preterm infants, there is little direct evidence to support the choice of which methylxanthine to use. More research is needed, especially on extremely preterm infants born before 28 weeks of gestation. Data from four ongoing studies might provide more evidence on the effects of caffeine or other methylxanthines.
Asunto(s)
Displasia Broncopulmonar , Pérdida Auditiva , Humanos , Recién Nacido , Aminofilina/uso terapéutico , Apnea/tratamiento farmacológico , Apnea/prevención & control , Peso al Nacer , Displasia Broncopulmonar/prevención & control , Cafeína/uso terapéutico , Recien Nacido Extremadamente Prematuro , Teofilina/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Administration of various exogenous surfactant preparations has been shown to decrease lung injury and pneumothorax and improve survival in very preterm infants with respiratory distress syndrome (RDS). There is no consensus on the threshold for surfactant administration, to allow timely intervention and avoid over-treatment, also considering the invasiveness of the procedure and its cost. Rapid tests for lung maturity, which include the click test, lamellar body counts and stable microbubble test, might guide the identification of those infants needing surfactant administration. OBJECTIVES: To assess the effects of surfactant treatment guided by rapid tests for surfactant deficiency in preterm infants at risk for or having RDS. Comparison 1: In preterm infants at risk for RDS, does surfactant treatment guided by rapid tests for surfactant deficiency compared to prophylactic surfactant administration to all high-risk infants minimize the need for surfactant treatment and prevent bronchopulmonary dysplasia and mortality? Comparison 2: In preterm infants who require early respiratory support, does surfactant treatment guided by rapid tests for surfactant deficiency compared to surfactant therapy provided to infants with RDS diagnosed on clinical and radiologic criteria minimize the need for surfactant treatment and prevent bronchopulmonary dysplasia and mortality? SEARCH METHODS: We searched in October 2022 CENTRAL, PubMed, Embase and three additional trial registries. We also screened the reference lists of included studies and related systematic reviews for studies not identified by the database searches. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and quasi-RCTs evaluating rapid tests after birth for surfactant deficiency in infants at high risk of RDS or requiring respiratory support. We specified two comparisons: 1)surfactant treatment guided by rapid tests for surfactant deficiency versus prophylactic surfactant administration to all high-risk infants in extremely preterm (less than 28 weeks' gestation) and very preterm (28 to 32 weeks' gestation); 2)surfactant treatment guided by rapid tests for surfactant deficiency versus surfactant therapy provided to preterm infants (less than 37 weeks' gestation) with RDS diagnosed on clinical and radiologic criteria. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We used the fixed-effect model with risk ratio (RR) and risk difference (RD), with their 95% confidence intervals (CIs) for dichotomous data. Our primary outcomes were: neonatal mortality, mortality prior to hospital discharge, bronchopulmonary dysplasia and the composite outcome bronchopulmonary dysplasia or mortality. We used GRADE to assess the certainty of evidence. MAIN RESULTS: We included three RCTs enrolling 562 newborn infants in this review. No studies compared surfactant treatment guided by rapid tests for surfactant deficiency versus prophylactic surfactant administration to all high-risk infants. Comparing surfactant therapy guided by rapid tests for surfactant deficiency versus surfactant therapy provided to infants with RDS diagnosed on clinical and radiologic criteria. No studies reported neonatal mortality. Compared with surfactant therapy provided to infants with RDS diagnosed on clinical and radiologic criteria, the evidence is very uncertain about the effect of surfactant treatment guided by rapid tests for surfactant deficiency on mortality prior to hospital discharge: RR 1.25, 95% CI 0.65 to 2.41, RD 0.01, 95% CI -0.03 to 0.05, 562 participants, 3 studies; I² for RR and RD = 75% and 43%, respectively; very low-certainty evidence. Surfactant treatment guided by rapid tests for surfactant deficiency may result in little to no difference in bronchopulmonary dysplasia: RR 0.90, 95% CI 0.61 to 1.32, RD -0.02, 95% CI -0.08 to 0.04, 562 participants, 3 studies; I² for RR and RD = 0%; low-certainty evidence. No studies reported the composite outcome bronchopulmonary dysplasia or mortality. Surfactant treatment guided by rapid tests for surfactant deficiency may result in little to no difference in surfactant utilization (RR 0.97, 95% CI 0.85 to 1.11, RD -0.02, 95% CI -0.10 to 0.06, 562 participants, 3 studies, I² for RR and RD = 63% and 65%, respectively, low-certainty evidence), and any pneumothorax (RR 0.53, 95% CI 0.15 to 1.92, RD -0.01, 95% CI -0.04 to 0.01, 506 participants, 2 studies, I² for RR and RD = 0%, low-certainty evidence) compared with surfactant therapy provided to infants with RDS diagnosed on clinical and radiologic criteria. No studies reported moderate to severe neurodevelopmental impairment. We identified two large ongoing RCTs. AUTHORS' CONCLUSIONS: No studies compared surfactant treatment guided by rapid tests for surfactant deficiency to prophylactic surfactant administration to all high-risk infants. Low to very low-certainty evidence from three studies is available on surfactant therapy guided by rapid tests for surfactant deficiency versus surfactant therapy provided to infants with RDS diagnosed on clinical and radiologic criteria. No studies reported neonatal mortality, the composite outcome 'bronchopulmonary dysplasia or mortality', or neurodevelopmental outcomes. Compared with surfactant therapy provided to infants with RDS diagnosed on clinical and radiologic criteria, the evidence is very uncertain about the effect of surfactant treatment guided by rapid tests for surfactant deficiency on mortality prior to hospital discharge. Surfactant treatment guided by rapid tests for surfactant deficiency may result in little to no difference in bronchopulmonary dysplasia, surfactant utilization and any pneumothorax. The findings of the two large ongoing trials identified in this review are likely to have an important impact on establishing the effects of surfactant treatment guided by rapid tests for surfactant deficiency in preterm infants.
Asunto(s)
Displasia Broncopulmonar , Neumotórax , Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Recién Nacido , Lactante , Humanos , Tensoactivos/uso terapéutico , Displasia Broncopulmonar/prevención & control , Neumotórax/prevención & control , Recien Nacido Prematuro , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Síndrome de Dificultad Respiratoria del Recién Nacido/prevención & control , Surfactantes Pulmonares/uso terapéutico , PulmónRESUMEN
BACKGROUND: Very preterm infants often require respiratory support and are therefore exposed to an increased risk of chronic lung disease and later neurodevelopmental disability. Although methylxanthines are widely used to prevent and treat apnea associated with prematurity and to facilitate extubation, there is uncertainty about the benefits and harms of different types of methylxanthines. OBJECTIVES: To assess the effects of methylxanthines on the incidence of apnea, death, neurodevelopmental disability, and other longer-term outcomes in preterm infants (1) at risk for or with apnea, or (2) undergoing extubation. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, two other databases, and three trial registers (November 2022). SELECTION CRITERIA: We included randomized trials in preterm infants, in which methylxanthines (aminophylline, caffeine, or theophylline) were compared to placebo or no treatment for any indication (i.e. prevention of apnea, treatment of apnea, or prevention of re-intubation). DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods and GRADE to assess the certainty of evidence. MAIN RESULTS: We included 18 studies (2705 infants), evaluating the use of methylxanthine in preterm infants for: any indication (one study); prevention of apnea (six studies); treatment of apnea (five studies); and to prevent re-intubation (six studies). Death or major neurodevelopmental disability (DMND) at 18 to 24 months. Only the Caffeine for Apnea of Prematurity (CAP) study (enrolling 2006 infants) reported on this outcome. Overall, caffeine probably reduced the risk of DMND in preterm infants treated with caffeine for any indication (risk ratio (RR) 0.87, 95% confidence interval (CI) 0.78 to 0.97; risk difference (RD) -0.06, 95% CI -0.10 to -0.02; number needed to treat for an additional beneficial outcome (NNTB) 16, 95% CI 10 to 50; 1 study, 1869 infants; moderate-certainty evidence). No other trials reported DMND. Results from the CAP trial regarding DMND at 18 to 24 months are less precise when analyzed based on treatment indication. Caffeine probably results in little or no difference in DMND in infants treated for prevention of apnea (RR 1.00, 95% CI 0.80 to 1.24; RD -0.00, 95% CI -0.10 to 0.09; 1 study, 423 infants; moderate-certainty evidence) and probably results in a slight reduction in DMND in infants treated for apnea of prematurity (RR 0.85, 95% CI 0.71 to 1.01; RD -0.06, 95% CI -0.13 to 0.00; NNTB 16, 95% CI 7 to > 1000; 1 study, 767 infants; moderate-certainty evidence) or to prevent re-intubation (RR 0.85, 95% CI 0.73 to 0.99; RD -0.08, 95% CI -0.15 to -0.00; NNTB 12, 95% CI 6 to >1000; 1 study, 676 infants; moderate-certainty evidence). Death. In the overall analysis of any methylxanthine treatment for any indication, methylxanthine used for any indication probably results in little or no difference in death at hospital discharge (RR 0.99, 95% CI 0.71 to 1.37; I2 = 0%; RD -0.00, 95% CI -0.02 to 0.02; I2 = 5%; 7 studies, 2289 infants; moderate-certainty evidence). Major neurodevelopmental disability at 18 to 24 months. In the CAP trial, caffeine probably reduced the risk of major neurodevelopmental disability at 18 to 24 months (RR 0.85, 95% CI 0.76 to 0.96; RD -0.06, 95% CI -0.10 to -0.02; NNTB 16, 95% CI 10 to 50; 1 study, 1869 infants; moderate-certainty evidence), including a reduction in the risk of cerebral palsy or gross motor disability (RR 0.60, 95% CI 0.41 to 0.88; RD -0.03, 95% CI -0.05 to -0.01; NNTB 33, 95% CI 20 to 100; 1 study, 1810 infants; moderate-certainty evidence) and a marginal reduction in the risk of developmental delay (RR 0.88, 95% CI 0.78 to 1.00; RD -0.05, 95% CI -0.09 to -0.00; NNTB 20, 95% CI 11 to > 1000; 1 study, 1725 infants; moderate-certainty evidence). Any apneic episodes, failed apnea reduction after two to seven days (< 50% reduction in apnea) (for infants treated with apnea), and need for positive-pressure ventilation after institution of treatment. Methylxanthine used for any indication probably reduces the occurrence of any apneic episodes (RR 0.31, 95% CI 0.18 to 0.52; I2 = 47%; RD -0.38, 95% CI -0.51 to -0.25; I2 = 49%; NNTB 3, 95% CI 2 to 4; 4 studies, 167 infants; moderate-certainty evidence), failed apnea reduction after two to seven days (RR 0.48, 95% CI 0.33 to 0.70; I2 = 0%; RD -0.31, 95% CI -0.44 to -0.17; I2 = 53%; NNTB 3, 95% CI 2 to 6; 4 studies, 174 infants; moderate-certainty evidence), and may reduce receipt of positive-pressure ventilation after institution of treatment (RR 0.61, 95% CI 0.39 to 0.96; I2 = 0%; RD -0.06, 95% CI -0.11 to -0.01; I2 = 49%; NNTB 16, 95% CI 9 to 100; 9 studies, 373 infants; low-certainty evidence). Chronic lung disease. Methylxanthine used for any indication reduces chronic lung disease (defined as the use of supplemental oxygen at 36 weeks' postmenstrual age) (RR 0.77, 95% CI 0.69 to 0.85; I2 = 0%; RD -0.10, 95% CI -0.14 to -0.06; I2 = 18%; NNTB 10, 95% CI 7 to 16; 4 studies, 2142 infants; high-certainty evidence). Failure to extubate or the need for re-intubation within one week after initiation of therapy. Methylxanthine used for the prevention of re-intubation probably results in a large reduction in failed extubation compared with no treatment (RR 0.48, 95% CI 0.32 to 0.71; I2 = 0%; RD -0.27, 95% CI -0.39 to -0.15; I2 = 69%; NNTB 4, 95% CI 2 to 6; 6 studies, 197 infants; moderate-certainty evidence). AUTHORS' CONCLUSIONS: Caffeine probably reduces the risk of death, major neurodevelopmental disability at 18 to 24 months, and the composite outcome DMND at 18 to 24 months. Administration of any methylxanthine to preterm infants for any indication probably leads to a reduction in the risk of any apneic episodes, failed apnea reduction after two to seven days, cerebral palsy, developmental delay, and may reduce receipt of positive-pressure ventilation after institution of treatment. Methylxanthine used for any indication reduces chronic lung disease (defined as the use of supplemental oxygen at 36 weeks' postmenstrual age).
Asunto(s)
Parálisis Cerebral , Personas con Discapacidad , Enfermedades Pulmonares , Trastornos Motores , Lactante , Recién Nacido , Humanos , Recien Nacido Prematuro , Cafeína/uso terapéutico , Apnea/tratamiento farmacológico , Apnea/prevención & control , OxígenoRESUMEN
BACKGROUND: Despite considerable improvement in outcomes for preterm infants, rates of bronchopulmonary dysplasia (BPD) remain high, affecting an estimated 33% of very low birthweight infants, with corresponding long-term respiratory and neurosensory issues. Systemic corticosteroids can address the inflammation underlying BPD, but the optimal regimen for prevention of this disease, balancing of the benefits with the potentially meaningful risks of systemic corticosteroids, continues to be a medical quandary. Numerous studies have shown that systemic corticosteroids, particularly dexamethasone and hydrocortisone, effectively treat or prevent BPD. However, concerning short and long-term side effects have been reported and the optimal approach to corticosteroid treatment remains unclear. OBJECTIVES: To determine whether differences in efficacy and safety exist between high-dose dexamethasone, moderate-dose dexamethasone, low-dose dexamethasone, hydrocortisone, and placebo in the prevention of BPD, death, the composite outcome of death or BPD, and other relevant morbidities, in preterm infants through a network meta-analysis, generating both pairwise comparisons between all treatments and rankings of the treatments. SEARCH METHODS: We searched the Cochrane Library for all systematic reviews of systemic corticosteroids for the prevention of BPD and searched for completed and ongoing studies in the following databases in January 2023: Cochrane Central Register of Controlled Trials, MEDLINE, Embase, and clinical trial databases. SELECTION CRITERIA: We included randomized controlled trials (RCTs) in preterm infants (< 37 weeks' gestation) at risk for BPD that evaluated systemic corticosteroids (high-dose [≥ 4 mg/kg cumulative dose] dexamethasone, moderate-dose [≥ 2 to < 4 mg/kg] dexamethasone, low-dose [< 2 mg/kg] dexamethasone, or hydrocortisone) versus control or another systemic corticosteroid. DATA COLLECTION AND ANALYSIS: Our main information sources were the systematic reviews, with reference to the original manuscript only for data not included in these reviews. Teams of two paired review authors independently performed data extraction, with disagreements resolved by discussion. Data were entered into Review Manager 5 and exported to R software for network meta-analysis (NMA). NMA was performed using a frequentist model with random-effects. Two separate networks were constructed, one for early (< seven days) initiation of treatment and one for late (≥ seven days) treatment initiation, to reflect the different patient populations evaluated. We assessed the certainty of evidence derived from the NMA for our primary outcomes using principles of the GRADE framework modified for application to NMA. MAIN RESULTS: We included 59 studies, involving 6441 infants, in our analyses. Only six of the included studies provided direct comparisons between any of the treatment (dexamethasone or hydrocortisone) groups, forcing network comparisons between treatments to rely heavily on indirect evidence through comparisons with placebo/no treatment groups. Thirty-one studies evaluated early corticosteroid treatment, 27 evaluated late corticosteroid treatment, and one study evaluated both early and late corticosteroid treatments. Early treatment (prior to seven days after birth): Benefits:NMA for early treatment showed only moderate-dose dexamethasone to decrease the risk of BPD at 36 weeks' postmenstrual age (PMA) compared with control (RR 0.56, 95% CI 0.39 to 0.80; moderate-certainty evidence), although the other dexamethasone dosing regimens may have similar effects compared with control (high-dose dexamethasone, RR 0.71, 95% CI 0.50 to 1.01; low-certainty evidence; low-dose dexamethasone, RR 0.83, 95% CI 0.67 to 1.03; low-certainty evidence). Other early treatment regimens may have little or no effect on the risk of death at 36 weeks' PMA. Only moderate-dose dexamethasone decreased the composite outcome of death or BPD at 36 weeks' PMA compared with control (RR 0.77, 95% CI 0.60 to 0.98; moderate-certainty evidence). HARMS: Low-dose dexamethasone increased the risk for cerebral palsy (RR 1.92, 95% CI 1.12 to 3.28; moderate-certainty evidence) compared with control. Hydrocortisone may decrease the risk of major neurosensory disability versus low-dose dexamethasone (RR 0.65, 95% CI 0.41 to 1.01; low-certainty evidence). Late treatment (at seven days or later after birth): Benefits: NMA for late treatment showed high-dose dexamethasone to decrease the risk of BPD both versus hydrocortisone (RR 0.66, 95% CI 0.51 to 0.85; low-certainty evidence) and versus control (RR 0.72, CI 0.59 to 0.87; moderate-certainty evidence). The late treatment regimens evaluated may have little or no effect on the risk of death at 36 weeks' PMA. High-dose dexamethasone decreased risk for the composite outcome of death or BPD compared with all other treatments (control, RR 0.69, 95% CI 0.59 to 0.80, high-certainty evidence; hydrocortisone, RR 0.69, 95% CI 0.58 to 0.84, low-certainty evidence; low-dose dexamethasone, RR 0.73, 95% CI 0.60 to 0.88, low-certainty evidence; moderate-dose dexamethasone, RR 0.76, 95% CI 0.62 to 0.93, low-certainty evidence). HARMS: No effect was observed for the outcomes of major neurosensory disability or cerebral palsy. The evidence for the primary outcomes was of overall low certainty, with notable deductions for imprecision and heterogeneity across the networks. AUTHORS' CONCLUSIONS: While early treatment with moderate-dose dexamethasone or late treatment with high-dose dexamethasone may lead to the best effects for survival without BPD, the certainty of the evidence is low. There is insufficient evidence to guide this therapy with regard to plausible adverse long-term outcomes. Further RCTs with direct comparisons between systemic corticosteroid treatments are needed to determine the optimal treatment approach, and these studies should be adequately powered to evaluate survival without major neurosensory disability.
Asunto(s)
Displasia Broncopulmonar , Parálisis Cerebral , Recién Nacido , Lactante , Humanos , Hidrocortisona/uso terapéutico , Displasia Broncopulmonar/prevención & control , Metaanálisis en Red , Corticoesteroides/efectos adversos , Dexametasona/efectos adversosRESUMEN
INTRODUCTION: Respiratory distress syndrome in preterm infants is an important cause of morbidity and mortality. Less invasive methods of surfactant administration, along with the use of continuous positive airway pressure (CPAP), have improved outcomes of preterm infants. Aerosolized surfactant can be given without the need for airway instrumentation and may be employed in areas where these skills are scarce. Recent trials from high-resourced countries utilising aerosolized surfactant have had a low quality of evidence and varying outcomes. METHODS AND ANALYSIS: The Neo-INSPIRe trial is an unblinded, multicentre, randomised trial of a novel aerosolized surfactant drug/device combination. Inclusion criteria include preterm infants of 27-34+6 weeks' gestational age who weigh 900-1999g and who require CPAP with a fraction of inspired oxygen (FiO2) of 0.25-0.35 in the first 2-24 h of age. Infants are randomised 1:1 to control (CPAP alone) or intervention (CPAP with aerosolized surfactant). The primary outcome is the need for intratracheal bolus surfactant instillation within 72â h of age. Secondary outcomes include the incidence of reaching failure criteria (persistent FiO2 of > 0.40, severe apnoea or severe work of breathing), the need for and duration of ventilation and respiratory support, bronchopulmonary dysplasia and selected co-morbidities of prematurity. Assuming a 40% relative risk reduction to reduce the proportion of infants requiring intratracheal bolus surfactant from 45 to 27%, the study will aim to enrol 232 infants for the study to have a power of 80% to detect a significant difference with a type 1 error of 0.05. ETHICS AND DISSEMINATION: Ethical approval has been granted by the relevant human research ethics committees at University of Cape Town (HREC 681/2022), University of the Witwatersrand HREC (221112) and Stellenbosch University (M23/02/004). TRIAL REGISTRATION: PACTR202307490670785.
Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Recién Nacido , Lactante , Humanos , Recien Nacido Prematuro , Surfactantes Pulmonares/uso terapéutico , Lipoproteínas , Disnea , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como AsuntoRESUMEN
Importance: The long-term effects of surfactant administration via a thin catheter (minimally invasive surfactant therapy [MIST]) in preterm infants with respiratory distress syndrome remain to be definitively clarified. Objective: To examine the effect of MIST on death or neurodevelopmental disability (NDD) at 2 years' corrected age. Design, Setting, and Participants: Follow-up study of a randomized clinical trial with blinding of clinicians and outcome assessors conducted in 33 tertiary-level neonatal intensive care units in 11 countries. The trial included 486 infants with a gestational age of 25 to 28 weeks supported with continuous positive airway pressure (CPAP). Collection of follow-up data at 2 years' corrected age was completed on December 9, 2022. Interventions: Infants assigned to MIST (n = 242) received exogenous surfactant (200 mg/kg poractant alfa) via a thin catheter; those assigned to the control group (n = 244) received sham treatment. Main Outcomes and Measures: The key secondary outcome of death or moderate to severe NDD was assessed at 2 years' corrected age. Other secondary outcomes included components of this composite outcome, as well as hospitalizations for respiratory illness and parent-reported wheezing or breathing difficulty in the first 2 years. Results: Among the 486 infants randomized, 453 had follow-up data available (median gestation, 27.3 weeks; 228 females [50.3%]); data on the key secondary outcome were available in 434 infants. Death or NDD occurred in 78 infants (36.3%) in the MIST group and 79 (36.1%) in the control group (risk difference, 0% [95% CI, -7.6% to 7.7%]; relative risk [RR], 1.0 [95% CI, 0.81-1.24]); components of this outcome did not differ significantly between groups. Secondary respiratory outcomes favored the MIST group. Hospitalization with respiratory illness occurred in 49 infants (25.1%) in the MIST group vs 78 (38.2%) in the control group (RR, 0.66 [95% CI, 0.54-0.81]) and parent-reported wheezing or breathing difficulty in 73 (40.6%) vs 104 (53.6%), respectively (RR, 0.76 [95% CI, 0.63-0.90]). Conclusions and Relevance: In this follow-up study of a randomized clinical trial of preterm infants with respiratory distress syndrome supported with CPAP, MIST compared with sham treatment did not reduce the incidence of death or NDD by 2 years of age. However, infants who received MIST had lower rates of adverse respiratory outcomes during their first 2 years of life. Trial Registration: anzctr.org.au Identifier: ACTRN12611000916943.
Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Femenino , Humanos , Lactante , Recién Nacido , Disnea , Estudios de Seguimiento , Recien Nacido Prematuro , Lipoproteínas , Surfactantes Pulmonares/administración & dosificación , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria del Recién Nacido/complicaciones , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Ruidos Respiratorios , Tensoactivos/administración & dosificación , Tensoactivos/uso terapéutico , Cateterismo , Procedimientos Quirúrgicos Mínimamente Invasivos , Presión de las Vías Aéreas Positiva Contínua , Masculino , PreescolarRESUMEN
BACKGROUND: Acute bilirubin encephalopathy (ABE) and the other serious complications of severe hyperbilirubinemia in the neonate occur far more frequently in low- and middle-income countries (LMIC). This is due to several factors that place babies in LMIC at greater risk for hyperbilirubinemia, including increased prevalence of hematologic disorders leading to hemolysis, increased sepsis, less prenatal or postnatal care, and a lack of resources to treat jaundiced babies. Hospitals and clinics face frequent shortages of functioning phototherapy machines and inconsistent access to electricity to run the machines. Sunlight has the potential to treat hyperbilirubinemia: it contains the wavelengths of light that are produced by phototherapy machines. However, it contains harmful ultraviolet light and infrared radiation, and prolonged exposure has the potential to lead to sunburn, skin damage, and hyperthermia or hypothermia. OBJECTIVES: To evaluate the efficacy of sunlight administered alone or with filtering or amplifying devices for the prevention and treatment of clinical jaundice or laboratory-diagnosed hyperbilirubinemia in term and late preterm neonates. SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search CENTRAL (2019, Issue 5), MEDLINE, Embase, and CINAHL on 2 May 2019. We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomized controlled trials (RCTs), quasi-RCTs, and cluster RCTs. We updated the searches on 1 June 2020. SELECTION CRITERIA: We included RCTs, quasi-RCTs, and cluster RCTs. We excluded crossover RCTs. Included studies must have evaluated sunlight (with or without filters or amplification) for the prevention and treatment of hyperbilirubinemia or jaundice in term or late preterm neonates. Neonates must have been enrolled in the study by one-week postnatal age. DATA COLLECTION AND ANALYSIS: We used standard methodologic procedures expected by Cochrane. We used the GRADE approach to assess the certainty of evidence. Our primary outcomes were: use of conventional phototherapy, treatment failure requiring exchange transfusion, ABE, chronic bilirubin encephalopathy, and death. MAIN RESULTS: We included three RCTs (1103 infants). All three studies had small sample sizes, were unblinded, and were at high risk of bias. We planned to undertake four comparisons, but only found studies reporting on two. Sunlight with or without filters or amplification compared to no treatment for the prevention and treatment of hyperbilirubinemia in term and late preterm neonates One study of twice-daily sunlight exposure (30 to 60 minutes) compared to no treatment reported the incidence of jaundice may be reduced (risk ratio [RR] 0.61, 95% confidence interval [CI] 0.45 to 0.82; risk difference [RD] -0.14, 95% CI -0.22 to -0.06; number needed to treat for an additional beneficial outcome [NNTB] 7, 95% CI 5 to 17; 1 study, 482 infants; very low-certainty evidence) and the number of days that an infant was jaundiced may be reduced (mean difference [MD] -2.20 days, 95% CI -2.60 to -1.80; 1 study, 482 infants; very low-certainty evidence). There were no data on safety or potential harmful effects of the intervention. The study did not assess use of conventional phototherapy, treatment failure requiring exchange transfusion, ABE, and long-term consequences of hyperbilirubinemia. The study showed that sunlight therapy may reduce rehospitalization rates within seven days of discharge for treatment for hyperbilirubinemia, but the evidence was very uncertain (RR 0.55, 95% CI 0.27 to 1.11; RD -0.04, -0.08 to 0.01; 1 study, 482 infants; very low-certainty evidence). Sunlight with or without filters or amplification compared to other sources of phototherapy for the treatment of hyperbilirubinemia in infants with confirmed hyperbilirubinemia Two studies (621 infants) compared the effect of filtered-sunlight exposure to other sources of phototherapy in infants with confirmed hyperbilirubinemia. Filtered-sunlight phototherapy (FSPT) and conventional or intensive electric phototherapy led to a similar number of days of effective treatment (broadly defined as a minimal increase of total serum bilirubin in infants less than 72 hours old and a decrease in total serum bilirubin in infants more than 72 hours old on any day that at least four to five hours of sunlight therapy was available). There may be little or no difference in treatment failure requiring exchange transfusion (typical RR 1.00, 95% CI 0.06 to 15.73; typical RD 0.00, 95% CI -0.01 to 0.01; 2 studies, 621 infants; low-certainty evidence). One study reported ABE, and no infants developed this outcome (RR not estimable; RD 0.00, 95% CI -0.02 to 0.02; 1 study, 174 infants; low-certainty evidence). One study reported death as a reason for study withdrawal; no infants were withdrawn due to death (RR not estimable; typical RD 0.00, 95% CI -0.01 to 0.01; 1 study, 447 infants; low-certainty evidence). Neither study assessed long-term outcomes. Possible harms: both studies showed a probable increased risk for hyperthermia (body temperature greater than 37.5 °C) with FSPT (typical RR 4.39, 95% CI 2.98 to 6.47; typical RD 0.30, 95% CI 0.23 to 0.36; number needed to treat for an additional harmful outcome [NNTH] 3, 95% CI 2 to 4; 2 studies, 621 infants; moderate-certainty evidence). There was probably no difference in hypothermia (body temperature less than 35.5 °C) (typical RR 1.06, 95% CI 0.55 to 2.03; typical RD 0.00, 95% CI -0.03 to 0.04; 2 studies, 621 infants; moderate-certainty evidence). AUTHORS' CONCLUSIONS: Sunlight may be an effective adjunct to conventional phototherapy in LMIC settings, may allow for rotational use of limited phototherapy machines, and may be preferable to families as it can allow for increased bonding. Filtration of sunlight to block harmful ultraviolet light and frequent temperature checks for babies under sunlight may be warranted for safety. Sunlight may be effective in preventing hyperbilirubinemia in some cases, but these studies have not demonstrated that sunlight alone is effective for the treatment of hyperbilirubinemia given its sporadic availability and the low or very low certainty of the evidence in these studies.
Asunto(s)
Helioterapia/métodos , Hiperbilirrubinemia Neonatal/terapia , Sesgo , Recambio Total de Sangre , Helioterapia/efectos adversos , Helioterapia/instrumentación , Humanos , Hiperbilirrubinemia Neonatal/epidemiología , Hiperbilirrubinemia Neonatal/prevención & control , Hipertermia/epidemiología , Hipotermia/epidemiología , Incidencia , Recién Nacido , Recien Nacido Prematuro , Ictericia Neonatal/prevención & control , Ictericia Neonatal/terapia , Readmisión del Paciente/estadística & datos numéricos , Ensayos Clínicos Controlados Aleatorios como Asunto , Insuficiencia del TratamientoRESUMEN
BACKGROUND: Symptomatic patent ductus arteriosus (PDA) is associated with mortality and morbidity in preterm infants. In these infants, prophylactic use of indomethacin, a non-selective cyclooxygenase inhibitor, has demonstrated short-term clinical benefits. The effect of indomethacin in preterm infants with a symptomatic PDA remains unexplored. OBJECTIVES: To determine the effectiveness and safety of indomethacin (given by any route) compared to placebo or no treatment in reducing mortality and morbidity in preterm infants with a symptomatic PDA. SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 7), in the Cochrane Library; Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R); and Cumulative Index to Nursing and Allied Health Literature (CINAHL), on 31 July 2020. We also searched clinical trials databases and the reference lists of retrieved articles for randomized controlled trials (RCTs) and quasi-RCTs. SELECTION CRITERIA: We included RCTs and quasi-RCTs that compared indomethacin (any dose, any route) versus placebo or no treatment in preterm infants. DATA COLLECTION AND ANALYSIS: We used the standard methods of Cochrane Neonatal, with separate evaluation of trial quality and data extraction by at least two review authors. We used the GRADE approach to assess the certainty of evidence for the following outcomes: failure of PDA closure within one week of administration of the first dose of indomethacin; bronchopulmonary dysplasia (BPD) at 28 days' postnatal age and at 36 weeks' postmenstrual age; proportion of infants requiring surgical ligation or transcatheter occlusion; all-cause neonatal mortality; necrotizing enterocolitis (NEC) (≥ Bell stage 2); and mucocutaneous or gastrointestinal bleeding. MAIN RESULTS: We included 14 RCTs (880 preterm infants). Four out of the 14 included studies were judged to have high risk of bias in one or more domains. Indomethacin administration was associated with a large reduction in failure of PDA closure within one week of administration of the first dose (risk ratio (RR) 0.30, 95% confidence interval (CI) 0.23 to 0.38; risk difference (RD) -0.52, 95% CI -0.58 to -0.45; 10 studies, 654 infants; high-certainty evidence). There may be little to no difference in the incidence of BPD (BPD defined as supplemental oxygen need at 28 days' postnatal age: RR 1.45, 95% CI 0.60 to 3.51; 1 study, 55 infants; low-certainty evidence; BPD defined as supplemental oxygen need at 36 weeks' postmenstrual age: RR 0.80, 95% CI 0.41 to 1.55; 1 study, 92 infants; low-certainty evidence) and probably little to no difference in mortality (RR 0.78, 95% CI 0.46 to 1.33; 8 studies, 314 infants; moderate-certainty evidence) with use of indomethacin for symptomatic PDA. No differences were demonstrated in the need for surgical PDA ligation (RR 0.66, 95% CI 0.33 to 1.29; 7 studies, 275 infants; moderate-certainty evidence), in NEC (RR 1.27, 95% CI 0.36 to 4.55; 2 studies, 147 infants; low-certainty evidence), or in mucocutaneous or gastrointestinal bleeding (RR 0.33, 95% CI 0.01 to 7.58; 2 studies, 119 infants; low-certainty evidence) with use of indomethacin compared to placebo or no treatment. Certainty of evidence for BPD, surgical PDA ligation, NEC, and mucocutaneous or gastrointestinal bleeding was downgraded for very serious or serious imprecision. AUTHORS' CONCLUSIONS: High-certainty evidence shows that indomethacin is effective in closing a symptomatic PDA compared to placebo or no treatment in preterm infants. Evidence is insufficient regarding effects of indomethacin on other clinically relevant outcomes and medication-related adverse effects.
Asunto(s)
Inhibidores de la Ciclooxigenasa/uso terapéutico , Conducto Arterioso Permeable/tratamiento farmacológico , Indometacina/uso terapéutico , Sesgo , Displasia Broncopulmonar/epidemiología , Causas de Muerte , Inhibidores de la Ciclooxigenasa/administración & dosificación , Inhibidores de la Ciclooxigenasa/efectos adversos , Conducto Arterioso Permeable/mortalidad , Conducto Arterioso Permeable/cirugía , Enterocolitis Necrotizante/inducido químicamente , Hemorragia Gastrointestinal/inducido químicamente , Humanos , Incidencia , Indometacina/administración & dosificación , Indometacina/efectos adversos , Recién Nacido de Bajo Peso , Recién Nacido , Recien Nacido Prematuro , Ligadura/estadística & datos numéricos , Terapia por Inhalación de Oxígeno/estadística & datos numéricos , Placebos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricosRESUMEN
Importance: The benefits of surfactant administration via a thin catheter (minimally invasive surfactant therapy [MIST]) in preterm infants with respiratory distress syndrome are uncertain. Objective: To examine the effect of selective application of MIST at a low fraction of inspired oxygen threshold on survival without bronchopulmonary dysplasia (BPD). Design, Setting, and Participants: Randomized clinical trial including 485 preterm infants with a gestational age of 25 to 28 weeks who were supported with continuous positive airway pressure (CPAP) and required a fraction of inspired oxygen of 0.30 or greater within 6 hours of birth. The trial was conducted at 33 tertiary-level neonatal intensive care units around the world, with blinding of the clinicians and outcome assessors. Enrollment took place between December 16, 2011, and March 26, 2020; follow-up was completed on December 2, 2020. Interventions: Infants were randomized to the MIST group (n = 241) and received exogenous surfactant (200 mg/kg of poractant alfa) via a thin catheter or to the control group (n = 244) and received a sham (control) treatment; CPAP was continued thereafter in both groups unless specified intubation criteria were met. Main Outcomes and Measures: The primary outcome was the composite of death or physiological BPD assessed at 36 weeks' postmenstrual age. The components of the primary outcome (death prior to 36 weeks' postmenstrual age and BPD at 36 weeks' postmenstrual age) also were considered separately. Results: Among the 485 infants randomized (median gestational age, 27.3 weeks; 241 [49.7%] female), all completed follow-up. Death or BPD occurred in 105 infants (43.6%) in the MIST group and 121 (49.6%) in the control group (risk difference [RD], -6.3% [95% CI, -14.2% to 1.6%]; relative risk [RR], 0.87 [95% CI, 0.74 to 1.03]; P = .10). Incidence of death before 36 weeks' postmenstrual age did not differ significantly between groups (24 [10.0%] in MIST vs 19 [7.8%] in control; RD, 2.1% [95% CI, -3.6% to 7.8%]; RR, 1.27 [95% CI, 0.63 to 2.57]; P = .51), but incidence of BPD in survivors to 36 weeks' postmenstrual age was lower in the MIST group (81/217 [37.3%] vs 102/225 [45.3%] in the control group; RD, -7.8% [95% CI, -14.9% to -0.7%]; RR, 0.83 [95% CI, 0.70 to 0.98]; P = .03). Serious adverse events occurred in 10.3% of infants in the MIST group and 11.1% in the control group. Conclusions and Relevance: Among preterm infants with respiratory distress syndrome supported with CPAP, minimally invasive surfactant therapy compared with sham (control) treatment did not significantly reduce the incidence of the composite outcome of death or bronchopulmonary dysplasia at 36 weeks' postmenstrual age. However, given the statistical uncertainty reflected in the 95% CI, a clinically important effect cannot be excluded. Trial Registration: anzctr.org.au Identifier: ACTRN12611000916943.
Asunto(s)
Productos Biológicos/administración & dosificación , Displasia Broncopulmonar/prevención & control , Presión de las Vías Aéreas Positiva Contínua , Recien Nacido Prematuro , Fosfolípidos/administración & dosificación , Surfactantes Pulmonares/administración & dosificación , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Femenino , Humanos , Recién Nacido , Enfermedades del Prematuro/mortalidad , Masculino , Síndrome de Dificultad Respiratoria del Recién Nacido/mortalidad , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Método Simple CiegoRESUMEN
BACKGROUND: The preferred timing of umbilical-cord clamping in preterm infants is unclear. METHODS: We randomly assigned fetuses from women who were expected to deliver before 30 weeks of gestation to either immediate clamping of the umbilical cord (≤10 seconds after delivery) or delayed clamping (≥60 seconds after delivery). The primary composite outcome was death or major morbidity (defined as severe brain injury on postnatal ultrasonography, severe retinopathy of prematurity, necrotizing enterocolitis, or late-onset sepsis) by 36 weeks of postmenstrual age. Analyses were performed on an intention-to-treat basis, accounting for multiple births. RESULTS: Of 1634 fetuses that underwent randomization, 1566 were born alive before 30 weeks of gestation; of these, 782 were assigned to immediate cord clamping and 784 to delayed cord clamping. The median time between delivery and cord clamping was 5 seconds and 60 seconds in the respective groups. Complete data on the primary outcome were available for 1497 infants (95.6%). There was no significant difference in the incidence of the primary outcome between infants assigned to delayed clamping (37.0%) and those assigned to immediate clamping (37.2%) (relative risk, 1.00; 95% confidence interval, 0.88 to 1.13; P=0.96). The mortality was 6.4% in the delayed-clamping group and 9.0% in the immediate-clamping group (P=0.03 in unadjusted analyses; P=0.39 after post hoc adjustment for multiple secondary outcomes). There were no significant differences between the two groups in the incidences of chronic lung disease or other major morbidities. CONCLUSIONS: Among preterm infants, delayed cord clamping did not result in a lower incidence of the combined outcome of death or major morbidity at 36 weeks of gestation than immediate cord clamping. (Funded by the Australian National Health and Medical Research Council [NHMRC] and the NHMRC Clinical Trials Centre; APTS Australian and New Zealand Clinical Trials Registry number, ACTRN12610000633088 .).
Asunto(s)
Parto Obstétrico/métodos , Enfermedades del Prematuro/epidemiología , Recien Nacido Prematuro , Mortalidad Perinatal , Cordón Umbilical , Puntaje de Apgar , Constricción , Femenino , Hematócrito , Humanos , Incidencia , Recién Nacido/sangre , Masculino , Circulación Placentaria , Embarazo , Factores de TiempoRESUMEN
OBJECTIVES: To utilize a large multicenter neonatal cohort to describe survival and clinical outcomes of very low birth weight (VLBW) or preterm infants with ectopia cordis. STUDY DESIGN: Data were prospectively collected on 2â211â262 infants (born 2000-2017) from 845 US centers. Both VLBW (401-1500 g or 22-29 weeks of gestation) and non-VLBW (>1500 g and >29 weeks) infants had diagnoses or anatomic descriptors consistent with ectopia cordis and/or pentalogy of Cantrell. The primary outcome was neonatal survival, defined as hospital discharge or initial length of stay of ≥12 months. RESULTS: In total, 180 infants had ectopia cordis, 135 (76%) with findings of pentalogy of Cantrell. VLBW infants comprised 52% of the population. VLBW mortality was 96% with 79% dying within 12 hours, compared with 59% and 36%, respectively, for non-VLBW. One-third of VLBW infants received life support compared with 65% of non-VLBW. Surgery was reported for 34% of VLBW and 68% of non-VLBW infants. Congenital heart disease was reported in 8% of VLBW and 36% of non-VLBW, with conotruncal abnormalities most common. Survival exceeded 50% for infants >2500 g and >37 weeks of gestation. CONCLUSIONS: Survival of VLBW infants with ectopia cordis was poor and substantially worse compared with non-VLBW, with notable discrepancies in resuscitative efforts and surgical interventions. Although gestational age and weight strongly influence current survival, more detailed information regarding the severity of cardiac and noncardiac abnormalities is required to fully determine prognosis and inform counseling.
Asunto(s)
Ectopía Cordis/mortalidad , Tiempo de Internación/estadística & datos numéricos , Estudios de Casos y Controles , Preescolar , Edad Gestacional , Humanos , Lactante , Recién Nacido , Recién Nacido de muy Bajo Peso , Estudios Prospectivos , Estados Unidos/epidemiologíaRESUMEN
BACKGROUND: The prevalence of substance use, both prescribed and non-prescribed, is increasing in many areas of the world. Substance use by women of childbearing age contributes to increasing rates of neonatal abstinence syndrome (NAS). Neonatal opioid withdrawal syndrome (NOWS) is a newer term describing the subset of NAS related to opioid exposure. Non-pharmacological care is the first-line treatment for substance withdrawal in newborns. Despite the widespread use of non-pharmacological care to mitigate symptoms of NAS, there is not an established definition of, and standard for, non-pharmacological care practices in this population. Evaluation of safety and efficacy of non-pharmacological practices could provide clear guidance for clinical practice. OBJECTIVES: To evaluate the safety and efficacy of non-pharmacological treatment of infants at risk for, or having symptoms consistent with, opioid withdrawal on the length of hospitalization and use of pharmacological treatment for symptom management. Comparison 1: in infants at risk for, or having early symptoms consistent with, opioid withdrawal, does non-pharmacological treatment reduce the length of hospitalization and use of pharmacological treatment? Comparison 2: in infants receiving pharmacological treatment for symptoms consistent with opioid withdrawal, does concurrent non-pharmacological treatment reduce duration of pharmacological treatment, maximum and cumulative doses of opioid medication, and length of hospitalization? SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search CENTRAL (2019, Issue 10); Ovid MEDLINE; and CINAHL on 11 October 2019. We also searched clinical trials databases and the reference lists of retrieved articles for randomized controlled trials (RCTs), quasi-RCTs, and cluster trials. SELECTION CRITERIA: We included trials comparing single or bundled non-pharmacological interventions to no non-pharmacological treatment or different single or bundled non-pharmacological interventions. We assessed non-pharmacological interventions independently and in combination based on sufficient similarity in population, intervention, and comparison groups studied. We categorized non-pharmacological interventions as: modifying environmental stimulation, feeding practices, and support of the mother-infant dyad. We presented non-randomized studies identified in the search process narratively. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We used the GRADE approach to assess the certainty of evidence. Primary outcomes in infants at risk for, or having early symptoms consistent with, opioid withdrawal included length of hospitalization and pharmacological treatment with one or more doses of opioid or sedative medication. Primary outcomes in infants receiving opioid treatment for symptoms consistent with opioid withdrawal included length of hospitalization, length of pharmacological treatment with opioid or sedative medication, and maximum and cumulative doses of opioid medication. MAIN RESULTS: We identified six RCTs (353 infants) in which infants at risk for, or having symptoms consistent with, opioid withdrawal participated between 1975 and 2018. We identified no RCTs in which infants receiving opioid treatment for symptoms consistent with opioid withdrawal participated. The certainty of evidence for all outcomes was very low to low. We also identified and excluded 34 non-randomized studies published between 2005 and 2018, including 29 in which infants at risk for, or having symptoms consistent with, opioid withdrawal participated and five in which infants receiving opioid treatment for symptoms consistent with opioid withdrawal participated. We identified seven preregistered interventional clinical trials that may qualify for inclusion at review update when complete. Of the six RCTs, four studies assessed modifying environmental stimulation in the form of a mechanical rocking bed, prone positioning, non-oscillating waterbed, or a low-stimulation nursery; one study assessed feeding practices (comparing 24 kcal/oz to 20 kcal/oz formula); and one study assessed support of the maternal-infant dyad (tailored breastfeeding support). There was no evidence of a difference in length of hospitalization in the one study that assessed modifying environmental stimulation (mean difference [MD) -1 day, 95% confidence interval [CI) -2.82 to 0.82; 30 infants; very low-certainty evidence) and the one study of support of the maternal-infant dyad (MD -8.9 days, 95% CI -19.84 to 2.04; 14 infants; very low-certainty evidence). No studies of feeding practices evaluated the length of hospitalization. There was no evidence of a difference in use of pharmacological treatment in three studies of modifying environmental stimulation (typical risk ratio [RR) 1.00, 95% CI 0.86 to 1.16; 92 infants; low-certainty evidence), one study of feeding practices (RR 0.92, 95% CI 0.63 to 1.33; 49 infants; very low-certainty evidence), and one study of support of the maternal-infant dyad (RR 0.50, 95% CI 0.13 to 1.90; 14 infants; very low-certainty evidence). Reported secondary outcomes included neonatal intensive care unit (NICU) admission, days to regain birth weight, and weight nadir. One study of support of the maternal-infant dyad reported NICU admission (RR 0.50, 95% CI 0.13 to 1.90; 14 infants; very low-certainty evidence). One study of feeding practices reported days to regain birth weight (MD 1.10 days, 95% CI 2.76 to 0.56; 46 infants; very low-certainty evidence). One study that assessed modifying environmental stimulation reported weight nadir (MD -0.28, 95% CI -1.15 to 0.59; 194 infants; very low-certainty evidence) and one study of feeding practices reported weight nadir (MD -0.8, 95% CI -2.24 to 0.64; 46 infants; very low-certainty evidence). AUTHORS' CONCLUSIONS: We are uncertain whether non-pharmacological care for opioid withdrawal in newborns affects important clinical outcomes including length of hospitalization and use of pharmacological treatment based on the six included studies. The outcomes identified for this review were of very low- to low-certainty evidence. Combined analysis was limited by heterogeneity in study design and intervention definitions as well as the number of studies. Many prespecified outcomes were not reported. Although caregivers are encouraged by experts to optimize non-pharmacological care for opioid withdrawal in newborns prior to initiating pharmacological care, we do not have sufficient evidence to inform specific clinical practices. Larger well-designed studies are needed to determine the effect of non-pharmacological care for opioid withdrawal in newborns.