Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373166

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by ventricular arrhythmias, contractile dysfunctions and fibro-adipose replacement of myocardium. Cardiac mesenchymal stromal cells (CMSCs) participate in disease pathogenesis by differentiating towards adipocytes and myofibroblasts. Some altered pathways in ACM are known, but many are yet to be discovered. We aimed to enrich the understanding of ACM pathogenesis by comparing epigenetic and gene expression profiles of ACM-CMSCs with healthy control (HC)-CMSCs. Methylome analysis identified 74 differentially methylated nucleotides, most of them located on the mitochondrial genome. Transcriptome analysis revealed 327 genes that were more expressed and 202 genes that were less expressed in ACM- vs. HC-CMSCs. Among these, genes implicated in mitochondrial respiration and in epithelial-to-mesenchymal transition were more expressed, and cell cycle genes were less expressed in ACM- vs. HC-CMSCs. Through enrichment and gene network analyses, we identified differentially regulated pathways, some of which never associated with ACM, including mitochondrial functioning and chromatin organization, both in line with methylome results. Functional validations confirmed that ACM-CMSCs exhibited higher amounts of active mitochondria and ROS production, a lower proliferation rate and a more pronounced epicardial-to-mesenchymal transition compared to the controls. In conclusion, ACM-CMSC-omics revealed some additional altered molecular pathways, relevant in disease pathogenesis, which may constitute novel targets for specific therapies.


Asunto(s)
Células Madre Mesenquimatosas , Miocardio , Humanos , Células Madre Mesenquimatosas/metabolismo , Adipocitos , Homeostasis , Cromatina/genética , Cromatina/metabolismo
2.
J Cell Mol Med ; 26(13): 3687-3701, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35712781

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro-fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB-3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB-3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Adipogénesis/fisiología , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/patología , Muerte Súbita Cardíaca/patología , Humanos , Lípidos , Células del Estroma/metabolismo
3.
J Transl Med ; 20(1): 522, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371290

RESUMEN

BACKGROUND: Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca2+) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca2+ oscillations and the Ca2+ toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS: ACM C-MSC show enhanced spontaneous Ca2+ oscillations and concomitant increased Ca2+/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca2+ Entry (SOCE), which leads to enhanced Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca2+ handling machinery or CaMKII activity, we demonstrated a causative link between Ca2+ oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca2+ signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca2+ oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS: Altogether, our results extend the knowledge of Ca2+ dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM.


Asunto(s)
Cardiomiopatías , Células Madre Mesenquimatosas , Ratones , Animales , Humanos , Flecainida , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Miocitos Cardíacos , Calcio , Cardiomiopatías/genética
4.
Eur Heart J ; 42(48): 4947-4960, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34293101

RESUMEN

AIMS: Recent clinical trials indicate that sodium-glucose cotransporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in heart failure patients, but the underlying mechanisms remain unknown. We explored the direct effects of canagliflozin, an SGLT2 inhibitor with mild SGLT1 inhibitory effects, on myocardial redox signalling in humans. METHODS AND RESULTS: Study 1 included 364 patients undergoing cardiac surgery. Right atrial appendage biopsies were harvested to quantify superoxide (O2.-) sources and the expression of inflammation, fibrosis, and myocardial stretch genes. In Study 2, atrial tissue from 51 patients was used ex vivo to study the direct effects of canagliflozin on NADPH oxidase activity and nitric oxide synthase (NOS) uncoupling. Differentiated H9C2 and primary human cardiomyocytes (hCM) were used to further characterize the underlying mechanisms (Study 3). SGLT1 was abundantly expressed in human atrial tissue and hCM, contrary to SGLT2. Myocardial SGLT1 expression was positively associated with O2.- production and pro-fibrotic, pro-inflammatory, and wall stretch gene expression. Canagliflozin reduced NADPH oxidase activity via AMP kinase (AMPK)/Rac1signalling and improved NOS coupling via increased tetrahydrobiopterin bioavailability ex vivo and in vitro. These were attenuated by knocking down SGLT1 in hCM. Canagliflozin had striking ex vivo transcriptomic effects on myocardial redox signalling, suppressing apoptotic and inflammatory pathways in hCM. CONCLUSIONS: We demonstrate for the first time that canagliflozin suppresses myocardial NADPH oxidase activity and improves NOS coupling via SGLT1/AMPK/Rac1 signalling, leading to global anti-inflammatory and anti-apoptotic effects in the human myocardium. These findings reveal a novel mechanism contributing to the beneficial cardiac effects of canagliflozin.


Asunto(s)
Canagliflozina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Canagliflozina/metabolismo , Canagliflozina/farmacología , Humanos , Miocardio , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
5.
Circulation ; 142(13): 1249-1260, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32791857

RESUMEN

BACKGROUND: Electroanatomic voltage mapping (EVM) is a promising modality for guiding endomyocardial biopsies (EMBs). However, few data support its feasibility and safety. We now report the largest cohort of patients undergoing EVM-guided EMBs to show its diagnostic yield and to compare it with a cardiac magnetic resonance (CMR)-guided approach. METHODS: We included 162 consecutive patients undergoing EMB at our institution from 2010 to 2019. EMB was performed in pathological areas identified at EVM and CMR. CMR and EVM sensitivity and specificity regarding the identification of pathological substrates of myocardium were evaluated according to EMB results. RESULTS: Preoperative CMR showed late gadolinium enhancement in 70% of the patients, whereas EVM identified areas of low voltage in 61%. Right (73%), left (19%), or both ventricles (8%) underwent sampling. EVM proved to have sensitivity similar to CMR (74% versus 77%), with specificity being 70% and 47%, respectively. In 12 patients with EMB-proven cardiomyopathy, EVM identified pathological areas that had been undetected at CMR evaluation. Sensitivity of pooled EVM and CMR was as high as 95%. EMB analysis allowed us to reach a new diagnosis, different from the suspected clinical diagnosis, in 39% of patients. The complications rate was low, mostly related to vascular access, with no patients requiring urgent management. CONCLUSIONS: EVM proved to be a promising tool for targeted EMB because of its sensitivity and specificity for identification of myocardial pathological substrates. EVM was demonstrated to have accuracy similar to CMR. EVM and CMR together conferred a positive predictive value of 89% on EMB.


Asunto(s)
Medios de Contraste/administración & dosificación , Técnicas Electrofisiológicas Cardíacas , Gadolinio/administración & dosificación , Ventrículos Cardíacos , Imagen por Resonancia Magnética , Miocardio , Adulto , Biopsia , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad
6.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204386

RESUMEN

The "Extreme Exercise Hypothesis" states that when individuals perform training beyond the ideal exercise dose, a decline in the beneficial effects of physical activity occurs. This is due to significant changes in myocardial structure and function, such as hemodynamic alterations, cardiac chamber enlargement and hypertrophy, myocardial inflammation, oxidative stress, fibrosis, and conduction changes. In addition, an increased amount of circulating biomarkers of exercise-induced damage has been reported. Although these changes are often reversible, long-lasting cardiac damage may develop after years of intense physical exercise. Since several features of the athlete's heart overlap with arrhythmogenic cardiomyopathy (ACM), the syndrome of "exercise-induced ACM" has been postulated. Thus, the distinction between ACM and the athlete's heart may be challenging. Recently, an autoimmune mechanism has been discovered in ACM patients linked to their characteristic junctional impairment. Since cardiac junctions are similarly impaired by intense physical activity due to the strong myocardial stretching, we propose in the present work the novel hypothesis of an autoimmune response in endurance athletes. This investigation may deepen the knowledge about the pathological remodeling and relative activated mechanisms induced by intense endurance exercise, potentially improving the early recognition of whom is actually at risk.


Asunto(s)
Atletas , Autoanticuerpos/sangre , Biomarcadores/sangre , Resistencia Física , Adaptación Fisiológica , Animales , Displasia Ventricular Derecha Arritmogénica/etiología , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/fisiopatología , Autoinmunidad , Susceptibilidad a Enfermedades , Ejercicio Físico , Humanos , Miocardio/metabolismo , Miocardio/patología , Remodelación Ventricular
7.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800912

RESUMEN

Arrhythmogenic Cardiomyopathy (ACM) is characterized by the replacement of the myocardium with fibrotic or fibro-fatty tissue and inflammatory infiltrates in the heart. To date, while ACM adipogenesis is a well-investigated differentiation program, ACM-related fibrosis remains a scientific gap of knowledge. In this study, we analyze the fibrotic process occurring during ACM pathogenesis focusing on the role of cardiac mesenchymal stromal cells (C-MSC) as a source of myofibroblasts. We performed the ex vivo studies on plasma and right ventricular endomyocardial bioptic samples collected from ACM patients and healthy control donors (HC). In vitro studies were performed on C-MSC isolated from endomyocardial biopsies of both groups. Our results revealed that circulating TGF-ß1 levels are significantly higher in the ACM cohort than in HC. Accordingly, fibrotic markers are increased in ACM patient-derived cardiac biopsies compared to HC ones. This difference is not evident in isolated C-MSC. Nevertheless, ACM C-MSC are more responsive than HC ones to TGF-ß1 treatment, in terms of pro-fibrotic differentiation and higher activation of the SMAD2/3 signaling pathway. These results provide the novel evidence that C-MSC are a source of myofibroblasts and participate in ACM fibrotic remodeling, being highly responsive to ACM-characteristic excess TGF-ß1.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/fisiopatología , Endocardio/patología , Células Madre Mesenquimatosas/patología , Miofibroblastos/patología , Factor de Crecimiento Transformador beta1/fisiología , Adulto , Displasia Ventricular Derecha Arritmogénica/sangre , Displasia Ventricular Derecha Arritmogénica/patología , Diferenciación Celular , Endocardio/metabolismo , Femenino , Fibrosis , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , ARN Mensajero/biosíntesis , Transducción de Señal/fisiología , Proteína Smad2/fisiología , Proteína smad3/fisiología , Factor de Crecimiento Transformador beta1/sangre
8.
Medicina (Kaunas) ; 57(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802881

RESUMEN

Myocardial inflammation is an important cause of cardiovascular morbidity and sudden cardiac death in athletes. The relationship between sports practice and myocardial inflammation is complex, and recent data from studies concerning cardiac magnetic resonance imaging and endomyocardial biopsy have substantially added to our understanding of the challenges encountered in the comprehensive care of athletes with myocarditis or inflammatory cardiomyopathy (ICM). In this review, we provide an overview of the current knowledge on the epidemiology, pathophysiology, diagnosis, and treatment of myocarditis, ICM, and myopericarditis/perimyocarditis in athletes, with a special emphasis on arrhythmias, patient-tailored therapies, and sports eligibility issues.


Asunto(s)
Miocarditis , Deportes , Atletas , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/etiología , Humanos , Inflamación , Miocarditis/diagnóstico
9.
Europace ; 22(5): 797-805, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942607

RESUMEN

AIMS: To provide long-term outcome data on arrhythmogenic cardiomyopathy (ACM) patients with non-classical forms [left dominant ACM (LD-ACM) and biventricular ACM (Bi-ACM)] and an external validation of a recently proposed algorithm for ventricular arrhythmia (VA) prediction in ACM patients. METHODS AND RESULTS: Demographic, clinical, and outcome data were retrieved from all ACM patients encountered at our institution. Patients were classified according to disease phenotype (R-ACM; Bi-ACM; LD-ACM). Overall and by phenotype long-term survival were calculated; the novel Cadrin-Tourigny et al. algorithm was used to calculate the a priori predicted VA risk, and it was compared with the observed outcome to test its reliability. One hundred and one patients were enrolled; three subgroups were defined (R-ACM, n = 68; Bi-ACM, n = 14; LD-ACM, n = 19). Over a median of 5.41 (2.59-8.37) years, the non-classical form cohort experienced higher rates of VAs than the classical form [5-year freedom from VAs: 0.58 (0.43-0.78) vs. 0.76 (0.66-0.89), P = 0.04]. The Cadrin-Tourigny et al. predictive model adequately described the overall cohort risk [mean observed-predicted risk difference (O-PRD): +6.7 (-4.3, +17.7) %, P = 0.19]; strafing by subgroup, excellent goodness-of-fit was demonstrated for the R-ACM subgroup (mean O-PRD, P = 0.99), while in the Bi-ACM and LD-ACM ones the real observed risk appeared to be underestimated [mean O-PRD: -20.0 (-1.1, -38.9) %, P < 0.0001; -22.6 (-7.8, -37.5) %, P < 0.0001, respectively]. CONCLUSION: Non-classical ACM forms appear more prone to VAs than classical forms. The novel prediction model effectively predicted arrhythmic risk in the classical R-ACM cohort, but seemed to underestimate it in non-classical forms.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Estudios de Seguimiento , Humanos , Fenotipo , Reproducibilidad de los Resultados , Factores de Riesgo
10.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887493

RESUMEN

The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.


Asunto(s)
Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Animales , Bioingeniería , Humanos
11.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050449

RESUMEN

Adult human cardiac mesenchymal progenitor cells (hCmPC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Even if the mechanisms have not yet been fully elucidated, the stem cell differentiation is guided by the mitochondrial metabolism; however, mitochondrial approaches to identify hCmPC with enhanced stemness and/or differentiation capability for cellular therapy are not established. Here we demonstrated that hCmPCs sorted for low and high mitochondrial membrane potential (using a lipophilic cationic dye tetramethylrhodamine methyl ester, TMRM), presented differences in energy metabolism from preferential glycolysis to oxidative rates. TMRM-high cells are highly efficient in terms of oxygen consumption rate, basal and maximal respiration, and spare respiratory capacity compared to TMRM-low cells. TMRM-high cells showed characteristics of pre-committed cells and were associated with higher in vitro differentiation capacity through endothelial, cardiac-like, and, to a lesser extent, adipogenic and chondro/osteogenic cell lineage, when compared with TMRM-low cells. Conversely, TMRM-low showed higher self-renewal potential. To conclude, we identified two hCmPC populations with different metabolic profile, stemness maturity, and differentiation potential. Our findings suggest that metabolic sorting can isolate cells with higher regenerative capacity and/or long-term survival. This metabolism-based strategy to select cells may be broadly applicable to therapies.


Asunto(s)
Potencial de la Membrana Mitocondrial , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Biomarcadores , Diferenciación Celular , Metabolismo Energético , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Mitocondrias/genética , Mitocondrias/metabolismo , Desarrollo de Músculos/genética , Osteogénesis/genética
12.
Pacing Clin Electrophysiol ; 42(9): 1269-1272, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31004450

RESUMEN

Here, we describe the cases of two elite athletes, with a diagnosis of arrhythmogenic cardiomyopathy (ACM), in which a subcutaneous implantable cardioverter defibrillator (S-ICD) has been implanted. Both patients experienced a ventricular tachycardia during exercise and received effective S-ICD shocks that interrupted arrhythmias. This report reveals for the first time that the S-ICD is effective in reverting arrhythmias in ACM patients, even during exercise. Moreover, these cases may confirm that competition/physical activity is associated with ICD shocks.


Asunto(s)
Baloncesto , Ciclismo , Muerte Súbita Cardíaca/prevención & control , Desfibriladores Implantables , Ejercicio Físico , Taquicardia Ventricular/prevención & control , Humanos , Masculino , Adulto Joven
13.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31489895

RESUMEN

Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiopatías/metabolismo , Miocarditis/metabolismo , Miocardio/metabolismo , Animales , Biomarcadores , Calcio/metabolismo , Susceptibilidad a Enfermedades , Cardiopatías/diagnóstico , Cardiopatías/etiología , Cardiopatías/fisiopatología , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Sistema Inmunológico/patología , Miocarditis/diagnóstico , Miocarditis/etiología , Miocardio/patología , Estrés Oxidativo , Transducción de Señal
14.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426283

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease characterized by sudden death in young people and featured by fibro-adipose myocardium replacement, malignant arrhythmias, and heart failure. To date, no etiological therapies are available. Mutations in desmosomal genes cause abnormal mechanical coupling, trigger pro-apoptotic signaling pathways, and induce fibro-adipose replacement. Here, we discuss the hypothesis that the ACM causative mechanism involves a defect in the expression and/or activity of the cardiac Ca2+ handling machinery, focusing on the available data supporting this hypothesis. The Ca2+ toolkit is heavily remodeled in cardiomyocytes derived from a mouse model of ACM defective of the desmosomal protein plakophilin-2. Furthermore, ACM-related mutations were found in genes encoding for proteins involved in excitation‒contraction coupling, e.g., type 2 ryanodine receptor and phospholamban. As a consequence, the sarcoplasmic reticulum becomes more eager to release Ca2+, thereby inducing delayed afterdepolarizations and impairing cardiac contractility. These data are supported by preliminary observations from patient induced pluripotent stem-cell-derived cardiomyocytes. Assessing the involvement of Ca2+ signaling in the pathogenesis of ACM could be beneficial in the treatment of this life-threatening disease.


Asunto(s)
Arritmias Cardíacas/patología , Calcio/metabolismo , Cardiomiopatías/patología , Desmosomas/patología , Miocitos Cardíacos/patología , Animales , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Cardiomiopatías/metabolismo , Desmosomas/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Placofilinas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
15.
Int J Mol Sci ; 20(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096574

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by the progressive substitution of functional myocardium with noncontractile fibro-fatty tissue contributing to ventricular arrhythmias and sudden cardiac death. Cyclophilin A (CyPA) is a ubiquitous protein involved in several pathological mechanisms, which also characterize ACM (i.e., fibrosis, inflammation, and adipogenesis). Nevertheless, the involvement of CyPA in ACM cardiac remodeling has not been investigated yet. Thus, we first evaluated CyPA expression levels in the right ventricle (RV) tissue specimens obtained from ACM patients and healthy controls (HC) by immunohistochemistry. Then, we took advantage of ACM- and HC-derived cardiac mesenchymal stromal cells (C-MSC) to assess CyPA modulation during adipogenic differentiation. Interestingly, CyPA was more expressed in the RV sections obtained from ACM vs. HC subjects and positively correlated with the adipose replacement extent. Moreover, CyPA was upregulated at early stages of C-MSC adipogenic differentiation and was secreted at higher level over time in ACM- derived C-MSC. Our study provides novel ex vivo and in vitro information on CyPA expression in ACM remodeling paving the way for future C-MSC-based mechanistic and therapeutic investigations.


Asunto(s)
Arritmias Cardíacas/metabolismo , Cardiomiopatías/metabolismo , Ciclofilina A/metabolismo , Remodelación Ventricular , Adipogénesis/fisiología , Tejido Adiposo/patología , Arritmias Cardíacas/patología , Cardiomiopatías/patología , Diferenciación Celular , Ciclofilina A/genética , Muerte Súbita Cardíaca/patología , Fibrosis , Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Inflamación , Células Madre Mesenquimatosas/patología , Miocardio
16.
BMC Genomics ; 19(1): 491, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29940860

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is a genetic autosomal disease characterized by abnormal cell-cell adhesion, cardiomyocyte death, progressive fibro-adipose replacement of the myocardium, arrhythmias and sudden death. Several different cell types contribute to the pathogenesis of ACM, including, as recently described, cardiac stromal cells (CStCs). In the present study, we aim to identify ACM-specific expression profiles of human CStCs derived from endomyocardial biopsies of ACM patients and healthy individuals employing TaqMan Low Density Arrays for miRNA expression profiling, and high throughput sequencing for gene expression quantification. RESULTS: We identified 3 miRNAs and 272 genes as significantly differentially expressed at a 5% false discovery rate. Both the differentially expressed genes as well as the target genes of the ACM-specific miRNAs were found to be enriched in cell adhesion-related biological processes. Functional similarity and protein interaction-based network analyses performed on the identified deregulated genes, miRNA targets and known ACM-causative genes revealed clusters of highly related genes involved in cell adhesion, extracellular matrix organization, lipid transport and ephrin receptor signaling. CONCLUSIONS: We determined for the first time the coding and non-coding transcriptome characteristic of ACM cardiac stromal cells, finding evidence for a potential contribution of miRNAs, specifically miR-29b-3p, to ACM pathogenesis or phenotype maintenance.


Asunto(s)
Arritmias Cardíacas/genética , Cardiomiopatías/genética , MicroARNs/genética , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos
17.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2693-2704, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28716707

RESUMEN

Myocardial infarction (MI) is a major health burden worldwide. Extracellular High mobility group box 1 (HMGB1) regulates tissue healing after injuries. The reduced form of HMGB1 (fr-HMGB1) exerts chemotactic activity by binding CXCL12 through CXCR4, while the disulfide form, (ds-HMGB1), induces cytokines expression by TLR4. Here, we assessed the role of HMGB1 redox forms and the non-oxidizable mutant (3S) on human cardiac fibroblast (hcFbs) functions and cardiac remodeling after infarction. Among HMGB1 receptors, hcFbs express CXCR4. Fr-HMGB1 and 3S, but not ds-HMGB1, promote hcFbs migration through Src activation, while none of HMGB1 redox forms induces proliferation or inflammatory mediators. 3S is more effective than fr-HMGB1 in stimulating hcFbs migration and Src phosphorylation being active at lower concentrations and in oxidizing conditions. Notably, chemotaxis toward both proteins is CXCR4-dependent but, in contrast to fr-HMGB1, 3S does not require CXCL12 since hcFbs migration persists in the presence of the CXCL12/CXCR4 inhibitor AMD3100 or an anti-CXCL12 antibody. Interestingly, 3S interacts with CXCR4 and induces a different receptor conformation than CXCL12. Mice undergoing MI and receiving 3S exhibit adverse LV remodeling owing to an excessive collagen deposition promoted by a higher number of myofibroblasts. On the contrary, fr-HMGB1 ameliorates cardiac performance enhancing neoangiogenesis and reducing the infarcted area and fibrosis. Altogether, our results demonstrate that non-oxidizable HMGB1 induce a sustained cardiac fibroblasts migration despite the redox state of the environment and by altering CXCL12/CXCR4 axis. This affects proper cardiac remodeling after an infarction.


Asunto(s)
Movimiento Celular , Quimiocina CXCL12/metabolismo , Fibroblastos/metabolismo , Proteína HMGB1/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptores CXCR4/metabolismo , Femenino , Fibroblastos/patología , Humanos , Masculino , Infarto del Miocardio/patología , Miocardio/patología , Oxidación-Reducción
18.
BMC Med Genet ; 18(1): 145, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29221435

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited genetic disorder, characterized by the substitution of heart muscle with fibro-fatty tissue and severe ventricular arrhythmias, often leading to heart failure and sudden cardiac death. ACM is considered a monogenic disorder, but the low penetrance of mutations identified in patients suggests the involvement of additional genetic or environmental factors. METHODS: We used whole exome sequencing to investigate digenic inheritance in two ACM families where previous diagnostic tests have revealed a PKP2 mutation in all affected and some healthy individuals. In family members with PKP2 mutations we determined all genes that harbor variants in affected but not in healthy carriers or vice versa. We computationally prioritized the most likely candidates, focusing on known ACM genes and genes related to PKP2 through protein interactions, functional relationships, or shared biological processes. RESULTS: We identified four candidate genes in family 1, namely DAG1, DAB2IP, CTBP2 and TCF25, and eleven candidate genes in family 2. The most promising gene in the second family is TTN, a gene previously associated with ACM, in which the affected individual harbors two rare deleterious-predicted missense variants, one of which is located in the protein's only serine kinase domain. CONCLUSIONS: In this study we report genes that might act as digenic players in ACM pathogenesis, on the basis of co-segregation with PKP2 mutations. Validation in larger cohorts is still required to prove the utility of this model.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Adulto , Anciano , Anciano de 80 o más Años , Oxidorreductasas de Alcohol/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Co-Represoras , Conectina/química , Conectina/genética , Distroglicanos/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/genética , Linaje , Placofilinas/genética , Dominios Proteicos , Proteínas Represoras/genética , Secuenciación del Exoma , Proteínas Activadoras de ras GTPasa/genética
19.
Front Physiol ; 14: 1237101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538375

RESUMEN

Genetic cardiomyopathies are a group of inherited disorders in which myocardial structure and function are damaged. Many of these pathologies are rare and present with heterogenous phenotypes, thus personalized models are required to completely uncover their pathological mechanisms and develop valuable therapeutic strategies. Both cardiomyocytes and fibroblasts, differentiated from patient-specific human induced pluripotent stem cells, represent the most studied human cardiac cell models in the context of genetic cardiomyopathies. While endothelial dysfunction has been recognized as a possible pathogenetic mechanism, human induced pluripotent stem cell-derived endothelial cells are less studied, despite they constitute a suitable model to specifically dissect the role of the dysfunctional endothelium in the development and progression of these pathologies. In this review, we summarize the main studies in which human induced pluripotent stem cell-derived endothelial cells are used to investigate endothelial dysfunction in genetic-based cardiomyopathies to highlight new potential targets exploitable for therapeutic intervention, and we discuss novel perspectives that encourage research in this direction.

20.
Biomolecules ; 13(10)2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37892123

RESUMEN

Recent technical breakthroughs in genotyping and bioinformatics techniques have greatly facilitated the translation of genomics into clinical care [...].


Asunto(s)
Biología Computacional , Genómica , Humanos , Genómica/métodos , Enfermedades Raras/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda