Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
2.
Protein Sci ; 33(4): e4954, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520282

RESUMEN

Many Gram-negative bacteria use N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as AHL acylases, chemically degrade these molecules which prevents signal reception by bacteria and inhibits undesirable biofilm-related traits. These capabilities make acylases appealing candidates for controlling microbes, yet candidates with high activity levels and substrate specificity and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to generate these improved properties using the Protein One-Stop Shop Server. The engineering of acylases is complicated by low-throughput enzymatic assays. Alleviating this challenge, we report a time-course kinetic assay for AHL acylases that monitors the real-time production of homoserine lactone. Using the assay, we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2°C, which translated into high resistance against organic solvents and increased compatibility with material coatings. While the MacQ mutants were unexpectedly destabilized, they had considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.


Asunto(s)
4-Butirolactona/análogos & derivados , Amidohidrolasas , Percepción de Quorum , Amidohidrolasas/química , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Factores de Virulencia/genética
3.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746346

RESUMEN

Several enzymes from the metallo-ß-lactamase-like family of lactonases (MLLs) degrade N- acyl-L-homoserine lactones (AHLs). In doing so, they play a role in a microbial communication system, quorum sensing, which contributes to pathogenicity and biofilm formation. There is currently great interest in designing quorum quenching ( QQ ) enzymes that can interfere with this communication and be used in a range of industrial and biomedical applications. However, tailoring these enzymes for specific targets requires a thorough understanding of their mechanisms and the physicochemical properties that determine their substrate specificities. We present here a detailed biochemical, computational, and structural study of the MLL GcL, which is highly proficient, thermostable, and has broad substrate specificity. Strikingly, we show that GcL does not only accept a broad range of substrates but is also capable of utilizing different reaction mechanisms that are differentially used in function of the substrate structure or the remodeling of the active site via mutations. Comparison of GcL to other lactonases such as AiiA and AaL demonstrates similar mechanistic promiscuity, suggesting this is a shared feature across lactonases in this enzyme family. Mechanistic promiscuity has previously been observed in the lactonase/paraoxonase PON1, as well as with protein tyrosine phosphatases that operate via a dual general-acid mechanism. The apparent prevalence of this phenomenon is significant from both a biochemical and an engineering perspective: in addition to optimizing for specific substrates, it is possible to optimize for specific mechanisms, opening new doors not just for the design of novel quorum quenching enzymes, but also of other mechanistically promiscuous enzymes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda