Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511252

RESUMEN

Glucocorticoids (GCs) are some of the most widely prescribed therapies for treating numerous inflammatory diseases and multiple cancer types. With chronic use, GCs' therapeutic benefits are concurrent with deleterious metabolic side effects, which worsen when combined with a high-fat diet (HFD). One characteristic of the common Western HFD is the presence of high omega-6 polyunsaturated fatty acids (PUFAs) and a deficiency in omega-3 PUFAs. The aim of this experiment was to determine whether fat composition resulting from HFD affects glucocorticoid-induced alterations in lipid-handling by the liver and skeletal muscle. Male wild-type C57BL/6 mice were randomized into two groups: n-6 (45% fat 177.5 g lard) and n-3 (45% fat 177.5 g Menhaden oil). After 4 weeks on their diets, groups were divided to receive either daily injections of dexamethasone (3 mg/kg/day) or sterile PBS for 1 week while continuing diets. The n-3 HFD diet attenuated adipose and hepatic fatty accumulation and prevented GC-induced increases in liver lipid metabolism markers Cd36 and Fabp. N-3 HFD had little effect on markers of lipid metabolism in oxidative and glycolytic skeletal muscle and was unable to attenuate GC-induced gene expression in the muscle. The present study's result demonstrated that the change of fat composition in HFD could beneficially alter the fatty acid accumulation and associated lipid metabolism markers in mice treated with dexamethasone.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos Omega-3 , Animales , Masculino , Ratones , Dexametasona/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Glucocorticoides/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL
2.
Medicines (Basel) ; 9(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35200758

RESUMEN

Lengthening the daily eating period contributes to the onset of obesity and metabolic syndrome. Dietary approaches, including energy restriction and time-restricted feeding, are promising methods to combat metabolic disorders. This study explored the effect of early and late time-restricted feeding (TRF) on weight and adiposity, food consumption, glycemic control, clock gene expression, and liver metabolite composition in diurnal Nile grass rats (NGRs). Adult male and female Nile grass rats were randomly assigned to one of three groups: (1) access to a 60% high-fat (HF) diet ad-libitum (HF-AD), (2) time-restricted access to the HF diet for the first 6 h of the 12 h light/active phase (HF-AM) or (3) the second 6 h of the 12 h light/active phase (HF-PM). Animals remained on their respective protocols for six weeks. TRF reduced total energy consumption and weight gain, and early TRF (HF-AM) reduced fasting blood glucose, restored Per1 expression, and reduced liver lipid levels. Although sex-dependent differences were observed for fat storage and lipid composition, TRF improved metabolic parameters in both male and female NGRs. In conclusion, this study demonstrated that early TRF protocol benefits weight management, improves lipid and glycemic control, and restores clock gene expression in NGRs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda