Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Nature ; 611(7935): 387-398, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36289338

RESUMEN

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.


Asunto(s)
Genoma Humano , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Metilación de ADN , Leucemia Mieloide Aguda/genética , Genoma Humano/genética , Regiones Promotoras Genéticas , Elementos de Facilitación Genéticos , Silenciador del Gen , Reproducibilidad de los Resultados , Sistemas CRISPR-Cas , Análisis de Secuencia , ADN (Citosina-5-)-Metiltransferasas , Regulación Leucémica de la Expresión Génica
2.
Nature ; 588(7837): 337-343, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239788

RESUMEN

The zebrafish (Danio rerio) has been widely used in the study of human disease and development, and about 70% of the protein-coding genes are conserved between the two species1. However, studies in zebrafish remain constrained by the sparse annotation of functional control elements in the zebrafish genome. Here we performed RNA sequencing, assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing, whole-genome bisulfite sequencing, and chromosome conformation capture (Hi-C) experiments in up to eleven adult and two embryonic tissues to generate a comprehensive map of transcriptomes, cis-regulatory elements, heterochromatin, methylomes and 3D genome organization in the zebrafish Tübingen reference strain. A comparison of zebrafish, human and mouse regulatory elements enabled the identification of both evolutionarily conserved and species-specific regulatory sequences and networks. We observed enrichment of evolutionary breakpoints at topologically associating domain boundaries, which were correlated with strong histone H3 lysine 4 trimethylation (H3K4me3) and CCCTC-binding factor (CTCF) signals. We performed single-cell ATAC-seq in zebrafish brain, which delineated 25 different clusters of cell types. By combining long-read DNA sequencing and Hi-C, we assembled the sex-determining chromosome 4 de novo. Overall, our work provides an additional epigenomic anchor for the functional annotation of vertebrate genomes and the study of evolutionarily conserved elements of 3D genome organization.


Asunto(s)
Genoma/genética , Imagenología Tridimensional , Imagen Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Pez Cebra/genética , Animales , Encéfalo/metabolismo , Secuencia Conservada/genética , Metilación de ADN , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Masculino , Ratones , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Análisis de la Célula Individual , Especificidad de la Especie
3.
RNA ; 29(10): 1509-1519, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451866

RESUMEN

As one of the most prevalent RNA modifications in animals, adenosine-to-inosine (A-to-I) RNA editing facilitates the environmental adaptation of organisms by diversifying the proteome in a temporal-spatial manner. In flies and bees, the editing enzyme Adar has independently gained two different autorecoding sites that form an autofeedback loop, stabilizing the overall editing efficiency. This ensures cellular homeostasis by keeping the normal function of target genes. However, in a broader range of insects, the evolutionary dynamics and significance of this Adar autoregulatory mechanism are unclear. We retrieved the genomes of 377 arthropod species covering the five major insect orders (Hemiptera, Hymenoptera, Coleoptera, Diptera, and Lepidoptera) and aligned the Adar autorecoding sites across all genomes. We found that the two autorecoding sites underwent compensatory gains and losses during the evolution of two orders with the most sequenced species (Diptera and Hymenoptera), and that the two editing sites were mutually exclusive among them: One editable site is significantly linked to another uneditable site. This autorecoding mechanism of Adar could flexibly diversify the proteome and stabilize global editing activity. Many insects independently selected different autorecoding sites to achieve a feedback loop and regulate the global RNA editome, revealing an interesting phenomenon during evolution. Our study reveals the evolutionary force acting on accurate regulation of RNA editing activity in insects and thus deepens our understanding of the functional importance of RNA editing in environmental adaptation and evolution.


Asunto(s)
Edición de ARN , ARN , Animales , ARN/genética , Edición de ARN/genética , Proteoma/genética , Secuencia de Bases , Insectos/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Inosina/genética , Inosina/metabolismo
4.
Cell Mol Life Sci ; 81(1): 136, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478033

RESUMEN

BACKGROUND: Metazoan adenosine-to-inosine (A-to-I) RNA editing resembles A-to-G mutation and increases proteomic diversity in a temporal-spatial manner, allowing organisms adapting to changeable environment. The RNA editomes in many major animal clades remain unexplored, hampering the understanding on the evolution and adaptation of this essential post-transcriptional modification. METHODS: We assembled the chromosome-level genome of Coridius chinensis belonging to Hemiptera, the fifth largest insect order where RNA editing has not been studied yet. We generated ten head RNA-Seq libraries with DNA-Seq from the matched individuals. RESULTS: We identified thousands of high-confidence RNA editing sites in C. chinensis. Overrepresentation of nonsynonymous editing was observed, but conserved recoding across different orders was very rare. Under cold stress, the global editing efficiency was down-regulated and the general transcriptional processes were shut down. Nevertheless, we found an interesting site with "conserved editing but non-conserved recoding" in potassium channel Shab which was significantly up-regulated in cold, serving as a candidate functional site in response to temperature stress. CONCLUSIONS: RNA editing in C. chinensis largely recodes the proteome. The first RNA editome in Hemiptera indicates independent origin of beneficial recoding during insect evolution, which advances our understanding on the evolution, conservation, and adaptation of RNA editing.


Asunto(s)
Adenosina , ARN , Humanos , Animales , ARN/genética , Adenosina/genética , Intrones , Proteómica , Inosina/genética , Insectos/genética
5.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039153

RESUMEN

Müllerian mimicry provides natural replicates ideal for exploring mechanisms underlying adaptive phenotypic divergence and convergence, yet the genetic mechanisms underlying mimetic variation remain largely unknown. The current study investigates the genetic basis of mimetic color pattern variation in a highly polymorphic bumble bee, Bombus breviceps (Hymenoptera, Apidae). In South Asia, this species and multiple comimetic species converge onto local Müllerian mimicry patterns by shifting the abdominal setal color from orange to black. Genetic crossing between the orange and black phenotypes suggested the color dimorphism being controlled by a single Mendelian locus, with the orange allele being dominant over black. Genome-wide association suggests that a locus at the intergenic region between 2 abdominal fate-determining Hox genes, abd-A and Abd-B, is associated with the color change. This locus is therefore in the same intergenic region but not the same exact locus as found to drive red black midabdominal variation in a distantly related bumble bee species, Bombus melanopygus. Gene expression analysis and RNA interferences suggest that differential expression of an intergenic long noncoding RNA between abd-A and Abd-B at the onset setal color differentiation may drive the orange black color variation by causing a homeotic shift late in development. Analysis of this same color locus in comimetic species reveals no sequence association with the same color shift, suggesting that mimetic convergence is achieved through distinct genetic routes. Our study establishes Hox regions as genomic hotspots for color pattern evolution in bumble bees and demonstrates how pleiotropic developmental loci can drive adaptive radiations in nature.


Asunto(s)
Mimetismo Biológico , Estudio de Asociación del Genoma Completo , Abejas/genética , Animales , Fenotipo , Mimetismo Biológico/genética , Edición Génica , ADN Intergénico/genética
6.
J Mol Evol ; 92(4): 488-504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39012510

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing recodes the genetic information. Apart from diversifying the proteome, another tempting advantage of RNA recoding is to correct deleterious DNA mutation and restore ancestral allele. Solid evidences for beneficial restorative editing are very rare in animals. By searching for "convergent recoding" under a phylogenetic context, we proposed this term for judging the potential restorative functions of particular editing site. For the well-known mammalian Gln>Arg (Q>R) recoding site, its ancestral state in vertebrate genomes was the pre-editing Gln, and all 470 available mammalian genomes strictly avoid other three equivalent ways to achieve Arg in protein. The absence of convergent recoding from His>Arg, or synonymous mutations on Gln codons, could be attributed to the strong maintenance on editing motif and structure, but the absence of direct A-to-G mutation is extremely unexpected. With similar ideas, we found cases of convergent recoding in Drosophila genus, reducing the possibility of their restorative function. In summary, we defined an interesting scenario of convergent recoding, the occurrence of which could be used as preliminary judgements for whether a recoding site has a sole restorative role. Our work provides novel insights to the natural selection and evolution of RNA editing.


Asunto(s)
Adenosina , Codón , Evolución Molecular , Inosina , Filogenia , Edición de ARN , Edición de ARN/genética , Animales , Inosina/genética , Adenosina/genética , Adenosina/metabolismo , Codón/genética , Selección Genética , Humanos , Drosophila/genética
7.
Nat Methods ; 18(6): 661-668, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34092790

RESUMEN

Recent efforts have shown that structural variations (SVs) can disrupt three-dimensional genome organization and induce enhancer hijacking, yet no computational tools exist to identify such events from chromatin interaction data. Here, we develop NeoLoopFinder, a computational framework to identify the chromatin interactions induced by SVs, including interchromosomal translocations, large deletions and inversions. Our framework can automatically resolve complex SVs, reconstruct local Hi-C maps surrounding the breakpoints, normalize copy number variation and allele effects and predict chromatin loops induced by SVs. We applied NeoLoopFinder in Hi-C data from 50 cancer cell lines and primary tumors and identified tens of recurrent genes associated with enhancer hijacking. To experimentally validate NeoLoopFinder, we deleted the hijacked enhancers in prostate adenocarcinoma cells using CRISPR-Cas9, which significantly reduced expression of the target oncogene. In summary, NeoLoopFinder enables identification of critical oncogenic regulatory elements that can potentially reveal therapeutic targets.


Asunto(s)
Cromatina/metabolismo , Elementos de Facilitación Genéticos , Genoma Humano , Variación Estructural del Genoma , Algoritmos , Sistemas CRISPR-Cas , Discapacidades del Desarrollo/genética , Humanos , Células K562 , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
RNA Biol ; 21(1): 29-45, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39256954

RESUMEN

Adar-mediated adenosine-to-inosine (A-to-I) mRNA editing is a conserved mechanism that exerts diverse regulatory functions during the development, evolution, and adaptation of metazoans. The accurate detection of RNA editing sites helps us understand their biological significance. In this work, with an improved genome assembly of honeybee (Apis mellifera), we used a new orthology-based methodology to complement the traditional pipeline of (de novo) RNA editing detection. Compared to the outcome of traditional pipeline, we retrieved many novel editing sites in CDS that are deeply conserved between honeybee and other distantly related insects. The newly retrieved sites were missed by the traditional de novo identification due to the stringent criteria for controlling false-positive rate. Caste-specific editing sites are identified, including an Ile>Met auto-recoding site in Adar. This recoding was even conserved between honeybee and bumblebee, suggesting its putative regulatory role in shaping the phenotypic plasticity of eusocial Hymenoptera. In summary, we proposed a complementary approach to the traditional pipeline and retrieved several previously unnoticed CDS editing sites. From both technical and biological aspects, our works facilitate future researches on finding the functional editing sites and advance our understanding on the connection between RNA editing and the great phenotypic diversity of organisms.


Asunto(s)
Adenosina , Evolución Molecular , Inosina , Edición de ARN , Animales , Inosina/genética , Inosina/metabolismo , Abejas/genética , Adenosina/metabolismo , Adenosina/genética , Secuencia Conservada , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo
9.
BMC Biol ; 21(1): 210, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37807035

RESUMEN

BACKGROUND: Phasmatodea (stick and leaf insects) play a central role on the debate regarding wing reduction and loss, and its wings are putative reacquisition from secondarily wingless ancestors based solely on extant species. A pivotal taxon in this respect is the species-poor Timematodea, consisting of approximately 21 wingless extant species, which form the sister group of all remaining winged or wingless stick and leaf insects, the Euphasmatodea. RESULTS: Herein, the new fossils of Timematodea from mid-Cretaceous Kachin amber are reported, with winged and wingless species co-occurring. The palaeogeographic distributions of all fossils of Holophasmatodea are summarized, showing their wide paleo-distributions. The phylogenetic analysis based on morphological characters confirms the earliest-diverging lineage of winged Breviala cretacea gen. et sp. nov. in Timematodea, and the possible relationships among all families of Holophasmatodea. These are critical for the reconstruction of patterns of wing evolution in early Phasmatodea. CONCLUSIONS: The new fossils suggest that Timematodea once had wings, at least during the mid-Cretaceous. The palaeogeographic occurrences imply that Timematodea probably have been widely distributed since at least the Jurassic. The phylogenetic analysis with the ancestral-state reconstruction of wings indicates that the common ancestors of Holophasmatodea were winged, the reductions and losses of wings among Timematodea and Euphasmatodea have occurred independently since at least the Cretaceous, and the reduction or loss of the forewing earlier than the hind wings.


Asunto(s)
Ámbar , Fósiles , Animales , Filogenia , Insectos , Alas de Animales/anatomía & histología , Hojas de la Planta
10.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542282

RESUMEN

Gaining insight into osmotic pressure and its biological implications is pivotal for revealing mechanisms underlying numerous fundamental biological processes across scales and will contribute to the biomedical and pharmaceutical fields. This review aims to provide an overview of the current understanding, focusing on two central issues: (i) how to determine theoretically osmotic pressure and (ii) how osmotic pressure affects important biological activities. More specifically, we discuss the representative theoretical equations and models for different solutions, emphasizing their applicability and limitations, and summarize the effect of osmotic pressure on lipid phase separation, cell division, and differentiation, focusing on the mechanisms underlying the osmotic pressure dependence of these biological processes. We highlight that new theory of osmotic pressure applicable for all experimentally feasible temperatures and solute concentrations needs to be developed, and further studies regarding the role of osmotic pressure in other biological processes should also be carried out to improve our comprehensive and in-depth understanding. Moreover, we point out the importance and challenges of developing techniques for the in vivo measurement of osmotic pressure.


Asunto(s)
Presión Osmótica , Soluciones , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda