RESUMEN
Glycosaminoglycan (GAG) lyase is an effective tool for the structural and functional studies of glycosaminoglycans and preparation of functional oligosaccharides. A new GAG lyase from Microbacterium sp. H14 was cloned, expressed, purified, and characterized, with a molecular weight of approximately 85.9 kDa. The deduced lyase HCLaseM belonged to the polysaccharide lyase (PL) family 8. Based on the phylogenetic tree, HCLaseM could not be classified into the existing three subfamilies of this family. HCLaseM showed almost the same enzyme activity towards hyaluronan (HA), chondroitin sulfate A (CS-A), CS-B, CS-C, and CS-D, which was different from reported GAG lyases. HCLaseM exhibited the highest activities to both HA and CS-A at its optimal temperature (35 °C) and pH (pH 7.0). HCLaseM was stable in the range of pH 5.0-8.0 and temperature below 30 °C. The enzyme activity was independent of divalent metal ions and was not obviously affected by most metal ions. HCLaseM is an endo-type enzyme yielding unsaturated disaccharides as the end products. The facilitated diffusion effect of HCLaseM is dose-dependent in animal experiments. These properties make it a candidate for further basic research and application.
Asunto(s)
Actinomycetales/enzimología , Condroitín Liasas/química , Glicosaminoglicanos/química , Oligosacáridos/química , Animales , Clonación Molecular , Femenino , Concentración de Iones de Hidrógeno , Iones/química , Ratones , Filogenia , Polisacárido Liasas/química , TemperaturaRESUMEN
Keratan sulfate (KS) represents an important family of glycosaminoglycans that are critical in diverse physiological processes. Recently, accumulating evidence has provided a wealth of information on the bioactivity of KS, which established it as an attractive candidate for drug development. However, although KS has been widely explored, less attention has been given to its effect on gut microbiota. Therefore, given that gut microbiota plays a pivotal role in health homeostasis and disease pathogenesis, we investigated here in detail the effect of KS on gut microbiota by high-throughput sequencing. As revealed by heatmap and principal component analysis, the mice gut microbiota was readily altered at different taxonomic levels by intake of low (8 mg/kg) and high dosage (40 mg/kg) of KS. Interestingly, KS exerted a differing effect on male and female microbiota. Specifically, KS induced a much more drastic increase in the abundance of Lactobacillus spp. in female (sixteen-fold) versus male mice (two-fold). In addition, combined with alterations in gut microbiota, KS also significantly reduced body weight while maintaining normal gut homeostasis. Altogether, we first demonstrated a sex-dependent effect of KS on gut microbiota and highlighted that it may be used as a novel prebiotic for disease management.
Asunto(s)
Cartílago/química , Microbioma Gastrointestinal/efectos de los fármacos , Sulfato de Queratano/farmacología , Lactobacillus/efectos de los fármacos , Tiburones/metabolismo , Extractos de Tejidos/farmacología , Animales , Dieta , Femenino , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacología , Sulfato de Queratano/química , Masculino , Ratones , Extractos de Tejidos/químicaRESUMEN
Glycosaminoglycan lyase is an effective tool for the functional studies of glycosaminoglycans and for the preparation of oligosaccharides. In this study, a new glycosaminoglycan lyase HCLaseV with a molecular weight of 90 kDa was cloned, expressed, and characterized from Vibrio sp. H240. The lyase belonged to the polysaccharide lyase (PL)- 8 family. HCLaseV showed enzyme activities toward chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, and hyaluronic acid. HCLaseV exhibited the highest activity against HA at pH 7.0 and 40 °C. HCLaseV was an endo-type enzyme whose degradation end-product was unsaturated disaccharides. Ca2+ inhibited the activity of HCLaseV to a certain extent, which was different from most of the enzymes in the PL-8 family. Mutagenesis studies showed that the Ca2+ inhibition might be related to the Asn244 residue. The sequence homology was evaluated by mutagenesis studies, and the catalytic residues in HCLaseV were presumed to be His278, Trp485, and Tyr287. These characteristics are helpful for further basic research and application.
Asunto(s)
Liasas , Vibrio , Clonación Molecular , Glicosaminoglicanos , Polisacárido Liasas/genética , Vibrio/genéticaRESUMEN
Chondroitinase ABC can be used to prepare chondroitin sulfate (CS) oligosaccharides efficiently and environmentally. It also promotes nerve recovery through enzymatic degradation of glycosaminoglycan chains in damaged nerve tissue. In this study, two new chondroitin sulfate ABC lyases were expressed and characterized from Edwardsiella tarda LMG2793, with molecular weight of 116.8â¯kDa and 115.9â¯kDa, respectively. Two lyases ChABC I and ChABC II belonged to the polysaccharide lyase (PL) family 8. ChABC I and ChABC II showed enzyme activity towards chondroitin sulfate A (CS-A), CS-B, CS-C and CS-D, but had no activity towards hyaluronan (HA). The optimal temperature for ChABC I to exhibit the highest activity against CS-A was 40⯰C and the optimal pH was 7.0. ChABC II showed the highest activity to CS-A at optimal temperature of 40⯰C and pH of 9.0. ChABC I and ChABC II were stable at 37⯰C and remained about 90 % of activity after incubation at 37⯰C for 3â¯h. Many metal ions had no effect on the activity of ChABC I and ChABC II. These properties were beneficial to their further basic research and application. ChABC I was an endo-type enzyme while ChABC II was an exo-type enzyme. A group of amino acids were selected for further study by evaluating the sequence homology with other CS degradation lyases. Mutagenesis studies speculated that the catalytic residues in ChABC I were His522, Tyr529 and Arg581. The catalytic residues of ChABC II were His498, Tyr505 and Arg558. This work will contribute to the structural and functional characterization of biomedically relevant CS and promote the application of CS lyase in further basic research and therapeutics.
Asunto(s)
Condroitina ABC Liasa , Sulfatos de Condroitina , Condroitina ABC Liasa/genética , Clonación Molecular , Edwardsiella tarda/genética , IonesRESUMEN
Chondroitin sulfate (CS) as a dietary supplement and a symptomatic slow acting (SYSA) drug has been used for years. Recently, CS has been demonstrated to be readily degraded and fermented in vitro by specific human gut microbes, hinting that dietary CS may pose a potential effect on gut microbiota composition in vivo. However, until now, little information is available on modulations of gut microbiota by CS. In the present study, modulations of gut microbiota in Kunming mice by CS and its oligosaccharide (CSO) were investigated by high-throughput sequencing. As evidenced by Heatmap and principal component analysis (PCA), the female microbiota were more vulnerable than the male microbiota to CS and CSO treatment. Besides, it is of interest to found that CS and CSO had differing effects on the abundance of Bacteroidales S24-7, Bacteroides, Helicobacter, Odoribacter, Prevotellaceae and Lactobacillus in male mice versus female mice. Collectively, we demonstrated a sex-dependent effect on gut microbiota of CS and CSO. In addition, since gut microbiota exerts a major effect on host physiology, our study highlighted that certain beneficial effects of CS may be associated with modulations of gut microbiota, which merits further investigation.