Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Inflammation ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954261

RESUMEN

Peroxiredoxin 6 (PRDX6) has a protective effect on pulmonary epithelial cells against cigarette smoke (CS)-induced ferroptosis. This study investigates the role of PRDX6 in the development of chronic obstructive pulmonary disease (COPD) and its possibility as a target. We observed that PRDX6 was downregulated in lung tissues of COPD patients and in CS-stimulated cells. The degradation of PRDX6 could be through the lysosomal pathway. PRDX6 deficiency exacerbated pulmonary inflammation and mucus hypersecretion in vivo. Overexpression of PRDX6 in Beas-2B cells ameliorated CS-induced cell death and inflammation, suggesting its protective role against CS-induced damage. Furthermore, PRDX6 deficiency promoted ferroptosis by adding the content of iron and reactive oxygen species, while iron chelation with deferoxamine mitigated CS-induced ferroptosis, cell death, and inflammatory infiltration both in vitro and in vivo. The critical role of PRDX6 in regulating ferroptosis suggests that targeting PRDX6 or iron metabolism may represent a promising strategy for COPD treatment.

2.
Cell Signal ; 113: 110964, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956773

RESUMEN

BACKGROUND: The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD: House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS: Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION: Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.


Asunto(s)
Asma , FN-kappa B , Animales , Humanos , Ratones , Asma/tratamiento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factor 10 de Crecimiento de Fibroblastos/farmacología , Factor 10 de Crecimiento de Fibroblastos/uso terapéutico , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Pulmón/metabolismo , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Inflammation ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722504

RESUMEN

Ferroptosis is a newly proposed form of programmed cell death that is iron-dependent and closely linked to oxidative stress. Its specific morphological changes include shrunken mitochondria, increased density of mitochondrial membrane, and rupture or disappearance of mitochondrial cristae. The main mechanism of ferroptosis involves excessive free iron reacting with membrane phospholipids, known as the Fenton reaction, resulting in lipid peroxidation. However, the role of iron in acute lung injury (ALI) remains largely unknown. In this study, LPS was instilled into the airway to induce ALI in mice. We observed a significant increase in iron concentration during ALI, accompanied by elevated levels of lipid peroxidation markers such as malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE). Treatment with the iron chelator deferoxamine (DFO) or ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed lipid peroxidation and significantly attenuates lung injury. Similarly, DFO or Fer-1 treatment improved the cell survival significantly in vitro. These results demonstrated that ferroptosis occurs during ALI and that targeting ferroptosis is an effective treatment strategy. Interestingly, we found that the increased iron was primarily concentrated in mitochondria and DFO treatment effectively restored normal mitochondria morphology. To further confirm the damaging effect of iron on mitochondria, we performed mitochondrial stress tests in vitro, which revealed that iron stimulation led to mitochondrial dysfunction, characterized by impaired basal respiratory capacity, ATP production capacity, and maximum respiratory capacity. MitoTEMPO, an antioxidant targeting mitochondria, exhibited superior efficacy in improving iron-induced mitochondrial dysfunction compared to the broad-spectrum antioxidant NAC. Treatment with MitoTEMPO more effectively alleviated ALI. In conclusion, ferroptosis contributes to the pathogenesis of ALI and aggravates ALI by impairing mitochondrial function.

4.
Eur J Pharmacol ; 966: 176317, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38216081

RESUMEN

Oxidative stress and endoplasmic reticulum stress (ERS) was associated with the development of asthma. Edaravone (EDA) plays a classical role to prevent the occurrence and development of oxidative stress-related diseases. Herein, we investigated the involvement and signaling pathway of EDA in asthma, with particular emphasis on its impact on type 2 innate lymphoid cells (ILC2) and CD4+T cells, and then further elucidated whether EDA could inhibit house dust mite (HDM)-induced allergic asthma by affecting oxidative stress and ERS. Mice received intraperitoneally injection of EDA (10 mg/kg, 30 mg/kg), dexamethasone (DEX) and N-acetylcysteine (NAC), with the latter two used as positive control drugs. DEX and high dose of EDA showed better therapeutic effects in alleviating airway inflammation and mucus secretion in mice, along with decreasing eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) than NAC. Further, the protein levels of IL-33 in lung tissues were inhibited by EDA, leading to reduced activation of ILC2s in the lung. EDA treatment alleviated the activation of CD4+ T cells in lung tissues of HDM-induced asthmatic mice and reduced Th2 cytokine secretion in BALF. ERS-related markers (p-eIF2α, IRE1α, CHOP, GRP78) were decreased after treatment of EDA compared to HDM group. Malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), and superoxide dismutase (SOD) were detected to evaluate the oxidant stress in lung tissues. EDA showed a protective effect against oxidant stress. In conclusion, our findings demonstrated that EDA could suppress allergic airway inflammation by inhibiting oxidative stress and ERS, suggesting to serve as an adjunct medication for asthma in the future.


Asunto(s)
Asma , Inmunidad Innata , Ratones , Animales , Edaravona/farmacología , Edaravona/uso terapéutico , Citocinas/metabolismo , Endorribonucleasas/metabolismo , Peróxido de Hidrógeno/farmacología , Linfocitos , Proteínas Serina-Treonina Quinasas/metabolismo , Asma/metabolismo , Pulmón , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Oxidativo , Oxidantes/farmacología , Pyroglyphidae/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda