Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Idioma
Tipo del documento
Publication year range
1.
J. biomed. eng ; Sheng wu yi xue gong cheng xue za zhi;(6): 1054-1061, 2021.
Artículo en Zh | WPRIM | ID: wpr-921845

RESUMEN

Otitis media is one of the common ear diseases, and its accurate diagnosis can prevent the deterioration of conductive hearing loss and avoid the overuse of antibiotics. At present, the diagnosis of otitis media mainly relies on the doctor's visual inspection based on the images fed back by the otoscope equipment. Due to the quality of otoscope equipment pictures and the doctor's diagnosis experience, this subjective examination has a relatively high rate of misdiagnosis. In response to this problem, this paper proposes the use of faster region convolutional neural networks to analyze clinically collected digital otoscope pictures. First, through image data enhancement and preprocessing, the number of samples in the clinical otoscope dataset was expanded. Then, according to the characteristics of the otoscope picture, the convolutional neural network was selected for feature extraction, and the feature pyramid network was added for multi-scale feature extraction to enhance the detection ability. Finally, a faster region convolutional neural network with anchor size optimization and hyperparameter adjustment was used for identification, and the effectiveness of the method was tested through a randomly selected test set. The results showed that the overall recognition accuracy of otoscope pictures in the test samples reached 91.43%. The above studies show that the proposed method effectively improves the accuracy of otoscope picture classification, and is expected to assist clinical diagnosis.


Asunto(s)
Humanos , Computadores , Diagnóstico por Computador , Redes Neurales de la Computación , Otitis Media/diagnóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda