Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Genes Cells ; 28(2): 156-169, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36530170

RESUMEN

Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.


Asunto(s)
Callithrix , Células Madre Embrionarias , Animales , Humanos , Ratones , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Perfilación de la Expresión Génica , Transcriptoma
2.
Exp Neurol ; 363: 114379, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914084

RESUMEN

COVID-19 causes neurological damage, systemic inflammation, and immune cell abnormalities. COVID-19-induced neurological impairment may be caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which directly infects cells of the central nervous system (CNS) and exerts toxic effects. Furthermore, SARS-CoV-2 mutations occur constantly, and it is not well understood how the infectivity of the virus to cells of the CNS changes as the virus mutates. Few studies have examined whether the infectivity of cells of CNS - neural stem/progenitor cells (NS/PCs), neurons, astrocytes, and microglia - varies among SARS-CoV-2 mutant strains. In this study, therefore, we investigated whether SARS-CoV-2 mutations increase infectivity to CNS cells, including microglia. Since it was essential to demonstrate the infectivity of the virus to CNS cells in vitro using human cells, we generated cortical neurons, astrocytes, and microglia from human induced pluripotent stem cells (hiPSCs). We added pseudotyped lentiviruses of SARS-CoV-2 to each type of cells, and then we examined their infectivity. We prepared three pseudotyped lentiviruses expressing the S protein of the original strain (the first SARS-CoV-2 discovered in the world), the Delta variant, and the Omicron variant on their envelopes and analyzed differences of their ability to infect CNS cells. We also generated brain organoids and investigated the infectivity of each virus. The viruses did not infect cortical neurons, astrocytes, or NS/PCs, but microglia were infected by the original, Delta, and Omicron pseudotyped viruses. In addition, DPP4 and CD147, potential core receptors of SARS-CoV-2, were highly expressed in the infected microglia, while DPP4 expression was deficient in cortical neurons, astrocytes, and NS/PCs. Our results suggest that DPP4, which is also a receptor for Middle East respiratory syndrome-coronavirus (MERS-CoV), may play an essential role in the CNS. Our study is applicable to the validation of the infectivity of viruses that cause various infectious diseases in CNS cells, which are difficult to sample from humans.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , Microglía , SARS-CoV-2 , Dipeptidil Peptidasa 4 , Neuronas
3.
Stem Cell Reports ; 18(9): 1854-1869, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37657448

RESUMEN

The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Astrocitos , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular , Genotipo
4.
Inflamm Regen ; 42(1): 20, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35773727

RESUMEN

BACKGROUND: Microglia are innate immune cells that are the only residential macrophages in the central nervous system. They play vital physiological roles in the adult brain and during development. Microglia are particularly in the spotlight because many genetic risk factors recently identified for neurodegenerative diseases are largely expressed in microglia. Rare polymorphisms in these risk alleles lead to abnormal activity of microglia under traumatic or disease conditions. METHODS: In the present study, to investigate the multifaceted functions of human microglia, we established a novel robust protocol to generate microglia from human induced pluripotent stem cells (hiPSCs) using a combination of cytokines and small chemicals essential for microglia ontogeny. Moreover, we highly enhanced the microglial differentiation efficiency by forcing the expression of PU.1, a crucial transcription factor for microglial development, during posterior mesoderm differentiation. RESULTS: By our novel method, we demonstrated the generation of a greater number of hiPSC-derived microglia (hiMGLs, approximately 120-folds) than the prior methods (at most 40-folds). Over 90% of the hiMGLs expressed microglia-specific markers, such as CX3CR1 and IBA-1. Whole-transcriptome analysis revealed that these hiMGLs are similar to human primary microglia but differ from monocytes/macrophages. Furthermore, the specific physiological functions of microglia were confirmed through indices of lipopolysaccharide responsiveness, phagocytotic ability, and inflammasome formation. By co-culturing these hiMGLs with mouse primary neurons, we demonstrated that hiMGLs can regulate the activity and maturation of neurons. CONCLUSIONS: In this study, our new simple, rapid, and highly efficient method for generating microglia from hiPSCs will prove useful for future investigations on microglia in both physiological and disease conditions, as well as for drug discovery.

5.
Mol Neurobiol ; 57(4): 1847-1862, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31845093

RESUMEN

Understanding the mechanisms of glial scar formation by reactive astrocytes is crucial for elaborating a therapeutic strategy to brain and spinal cord injury. However, the extrinsic mechanisms that drive the polarization of reactive astrocytes, the first step in glial scar formation, remain poorly understood. Here, using an in vitro chemotaxis assay as an experimental model for polarization, we observed that Il4-M2 macrophages are stronger inducers of reactive astrocytes' polarization, compared to naive or M1 macrophages. Then, we showed that both ß1-integrin and Wnt/ß-catenin pathways in astrocytes are required for this polarization in vitro and in vivo after spinal cord crush injury in mice. These findings provide molecular targets for manipulating the polarization of reactive astrocytes in order to potentially enhance the healing of SCI lesions.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Polaridad Celular , Activación de Macrófagos , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Vía de Señalización Wnt , Animales , Quimiotaxis , Integrina beta1/metabolismo , Ratones Endogámicos C57BL , Proteína Wnt3A/metabolismo
6.
Cells ; 9(12)2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322219

RESUMEN

Induced pluripotent stem cell (iPSC)-based disease modeling has a great potential for uncovering the mechanisms of pathogenesis, especially in the case of neurodegenerative diseases where disease-susceptible cells can usually not be obtained from patients. So far, the iPSC-based modeling of neurodegenerative diseases has mainly focused on neurons because the protocols for generating astrocytes from iPSCs have not been fully established. The growing evidence of astrocytes' contribution to neurodegenerative diseases has underscored the lack of iPSC-derived astrocyte models. In the present study, we established a protocol to efficiently generate iPSC-derived astrocytes (iPasts), which were further characterized by RNA and protein expression profiles as well as functional assays. iPasts exhibited calcium dynamics and glutamate uptake activity comparable to human primary astrocytes. Moreover, when co-cultured with neurons, iPasts enhanced neuronal synaptic maturation. Our protocol can be used for modeling astrocyte-related disease phenotypes in vitro and further exploring the contribution of astrocytes to neurodegenerative diseases.


Asunto(s)
Astrocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Astrocitos/citología , Astrocitos/patología , Calcio/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Técnicas de Cocultivo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Ácido Glutámico/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Microscopía Fluorescente , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda