Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 178(2): 458-472.e19, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31178119

RESUMEN

mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous because multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real time. We find that start site selection is largely stochastic but that the probability of using a particular start site differs among mRNA molecules and can be dynamically regulated over time. This study provides key insights into translation start site selection heterogeneity and provides a powerful toolbox to visualize complex translation dynamics.


Asunto(s)
Colorantes Fluorescentes/química , ARN Mensajero/metabolismo , Imagen Individual de Molécula/métodos , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Línea Celular Tumoral , Genes Reporteros , Células HEK293 , Humanos , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/química , Ribosomas/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología
2.
Mol Cell ; 75(2): 324-339.e11, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31155380

RESUMEN

Nonsense-mediated decay (NMD) is a surveillance system that degrades mRNAs containing a premature termination codon (PTC) and plays important roles in protein homeostasis and disease. The efficiency of NMD is variable, impacting the clinical outcome of genetic mutations. However, limited resolution of bulk analyses has hampered the study of NMD efficiency. Here, we develop an assay to visualize NMD of individual mRNA molecules in real time. We find that NMD occurs with equal probability during each round of translation of an mRNA molecule. However, this probability is variable and depends on the exon sequence downstream of the PTC, the PTC-to-intron distance, and the number of introns both upstream and downstream of the PTC. Additionally, a subpopulation of mRNAs can escape NMD, further contributing to variation in NMD efficiency. Our study uncovers real-time dynamics of NMD, reveals key mechanisms that influence NMD efficiency, and provides a powerful method to study NMD.


Asunto(s)
Codón sin Sentido/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/genética , Codón sin Sentido/química , Exones/genética , Humanos , Intrones/genética , Mutación/genética , Estabilidad del ARN/genética , ARN Mensajero/química , Imagen Individual de Molécula
3.
Langmuir ; 33(25): 6342-6352, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28558246

RESUMEN

Fibrin is a plasma protein with a central role in blood clotting and wound repair. Upon vascular injury, fibrin forms resilient fibrillar networks (clots) via a multistep self-assembly process, from monomers, to double-stranded protofibrils, to a branched network of thick fibers. In vitro, fibrin self-assembly is sensitive to physicochemical conditions like the solution pH and ionic strength, which tune the strength of the noncovalent driving forces. Here we report a surprising finding that the buffer-which is necessary to control the pH and is typically considered to be inert-also significantly influences fibrin self-assembly. We show by confocal microscopy and quantitative light scattering that various common buffering agents have no effect on the initial assembly of fibrin monomers into protofibrils but strongly hamper the subsequent lateral association of protofibrils into thicker fibers. We further find that the structural changes are independent of the molecular structure of the buffering agents as well as of the activation mechanism and even occur in fibrin networks formed from platelet-poor plasma. This buffer-mediated decrease in protofibril bundling results in a marked reduction in the permeability of fibrin networks but only weakly influences the elastic modulus of fibrin networks, providing a useful tuning parameter to independently control the elastic properties and the permeability of fibrin networks. Our work raises the possibility that fibrin assembly in vivo may be regulated by variations in the acute-phase levels of bicarbonate and phosphate, which act as physiological buffering agents of blood pH. Moreover, our findings add a new example of buffer-induced effects on biomolecular self-assembly to recent findings for a range of proteins and lipids.


Asunto(s)
Fibrina/química , Coagulación Sanguínea , Tampones (Química) , Fibrinógeno , Sustancias Macromoleculares
4.
Elife ; 112022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103592

RESUMEN

Accurate control of the cell cycle is critical for development and tissue homeostasis, and requires precisely timed expression of many genes. Cell cycle gene expression is regulated through transcriptional and translational control, as well as through regulated protein degradation. Here, we show that widespread and temporally controlled mRNA decay acts as an additional mechanism for gene expression regulation during the cell cycle in human cells. We find that two waves of mRNA decay occur sequentially during the mitosis-to-G1 phase transition, and we identify the deadenylase CNOT1 as a factor that contributes to mRNA decay during this cell cycle transition. Collectively, our data show that, akin to protein degradation, scheduled mRNA decay helps to reshape cell cycle gene expression as cells move from mitosis into G1 phase.


Asunto(s)
Ciclo Celular/genética , Ciclo Celular/fisiología , Estabilidad del ARN/fisiología , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo
5.
Trends Cell Biol ; 30(8): 606-618, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32461030

RESUMEN

During mRNA translation, the genetic information stored in mRNA is translated into a protein sequence. It is imperative that the genetic information is translated with high precision. Surprisingly, however, recent experimental evidence has demonstrated that translation can be highly heterogeneous, even among different mRNA molecules derived from a single gene in an individual cell; multiple different polypeptides can be produced from a single mRNA molecule and the rate of translation can vary in both space and time. However, whether translational heterogeneity serves an important cellular function, or rather predominantly represents gene expression 'noise' remains an open question. In this review, we discuss the molecular basis and potential functions of such translational heterogeneity.


Asunto(s)
Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Secuencia de Aminoácidos , Animales , Humanos , Modelos Biológicos , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo
6.
Nat Protoc ; 15(4): 1371-1398, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32076351

RESUMEN

mRNA translation is a key step in gene expression. Proper regulation of translation efficiency ensures correct protein expression levels in the cell, which is essential to cell function. Different methods used to study translational control in the cell rely on population-based assays that do not provide information about translational heterogeneity between cells or between mRNAs of the same gene within a cell, and generally provide only a snapshot of translation. To study translational heterogeneity and measure translation dynamics, we have developed microscopy-based methods that enable visualization of translation of single mRNAs in live cells. These methods consist of a set of genetic tools, an imaging-based approach and sophisticated computational tools. Using the translation imaging method, one can investigate many new aspects of translation in single living cells, such as translation start-site selection, 3'-UTR (untranslated region) translation and translation-coupled mRNA decay. Here, we describe in detail how to perform such experiments, including reporter design, cell line generation, image acquisition and analysis. This protocol also provides a detailed description of the image analysis pipeline and computational modeling that will enable non-experts to correctly interpret fluorescence measurements. The protocol takes 2-4 d to complete (after cell lines expressing all required transgenes have been generated).


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Biosíntesis de Proteínas/genética , ARN Mensajero/análisis , Imagen Individual de Molécula/métodos , Células HEK293 , Humanos , ARN Mensajero/genética
7.
Nat Struct Mol Biol ; 27(9): 790-801, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661421

RESUMEN

Small interfering RNAs (siRNAs) promote RNA degradation in a variety of processes and have important clinical applications. siRNAs direct cleavage of target RNAs by guiding Argonaute2 (AGO2) to its target site. Target site accessibility is critical for AGO2-target interactions, but how target site accessibility is controlled in vivo is poorly understood. Here, we use live-cell single-molecule imaging in human cells to determine rate constants of the AGO2 cleavage cycle in vivo. We find that the rate-limiting step in mRNA cleavage frequently involves unmasking of target sites by translating ribosomes. Target site masking is caused by heterogeneous intramolecular RNA-RNA interactions, which can conceal target sites for many minutes in the absence of translation. Our results uncover how dynamic changes in mRNA structure shape AGO2-target recognition, provide estimates of mRNA folding and unfolding rates in vivo, and provide experimental evidence for the role of mRNA structural dynamics in control of mRNA-protein interactions.


Asunto(s)
Proteínas Argonautas/metabolismo , ARN Mensajero/metabolismo , Línea Celular , Células HEK293 , Humanos , Conformación de Ácido Nucleico , División del ARN , Pliegue del ARN , ARN Mensajero/química , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda