Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Publication year range
1.
J Nanobiotechnology ; 19(1): 5, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407567

RESUMEN

BACKGROUND: A positive surface charge has been largely associated with nanoparticle (NP) toxicity. However, by screening a carbon NP library in macrophages, we found that a cationic charge does not systematically translate into toxicity. To get deeper insight into this, we carried out a comprehensive study on 5 cationic carbon NPs (NP2 to NP6) exhibiting a similar zeta (ζ) potential value (from + 20.6 to + 26.9 mV) but displaying an increasing surface charge density (electrokinetic charge, Qek from 0.23 to 4.39 µmol/g). An anionic and non-cytotoxic NP (NP1, ζ-potential = - 38.5 mV) was used as control. RESULTS: The 5 cationic NPs induced high (NP6 and NP5, Qek of 2.95 and 4.39 µmol/g, respectively), little (NP3 and NP4, Qek of 0.78 and 1.35 µmol/g, respectively) or no (NP2, Qek of 0.23 µmol/g) viability loss in THP-1-derived macrophages exposed for 24 h to escalating NP dose (3 to 200 µg/mL). A similar toxicity trend was observed in airway epithelial cells (A549 and Calu-3), with less viability loss than in THP-1 cells. NP3, NP5 and NP6 were taken up by THP-1 cells at 4 h, whereas NP1, NP2 and NP4 were not. Among the 6 NPs, only NP5 and NP6 with the highest surface charge density induced significant oxidative stress, IL-8 release, mitochondrial dysfunction and loss in lysosomal integrity in THP-1 cells. As well, in mice, NP5 and NP6 only induced airway inflammation. NP5 also increased allergen-induced immune response, airway inflammation and mucus production. CONCLUSIONS: Thus, this study clearly reveals that the surface charge density of a cationic carbon NP rather than the absolute value of its ζ-potential is a relevant descriptor of its in vitro and in vivo toxicity.


Asunto(s)
Carbono/toxicidad , Cationes/toxicidad , Nanopartículas/toxicidad , Células A549 , Animales , Asma/patología , Supervivencia Celular , Citocinas , Modelos Animales de Enfermedad , Células Epiteliales , Humanos , Inflamación , Pulmón , Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Estrés Oxidativo , Células THP-1
2.
Sci Rep ; 13(1): 8741, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253814

RESUMEN

Epidemiologic data suggest that the prevalence of hypertension in patients with diabetes mellitus is ∼1.5-2.0 times greater than in matched non-diabetic patients. This co-existent disease burden exacerbates cardiac and vascular injury, leading to structural and functional changes to the myocardium, impaired cardiac function and heart failure. Oxidative stress and persistent low-grade inflammation underlie both conditions, and are identified as major contributors to pathological cardiac remodelling. There is an urgent need for effective therapies that specifically target oxidative stress and inflammation to protect against cardiac remodelling. Animal models are a valuable tool for testing emerging therapeutics, however, there is a notable lack of appropriate animal models of co-morbid diabetes and hypertension. In this study, we describe a novel preclinical mouse model combining diabetes and hypertension to investigate cardiac and vascular pathology of co-morbid disease. Type 1 diabetes was induced in spontaneously hypertensive, 8-week old, male Schlager (BPH/2) mice via 5 consecutive, daily injections of streptozotocin (55 mg/kg in citrate buffer; i.p.). Non-diabetic mice received citrate buffer only. After 10 weeks of diabetes induction, cardiac function was assessed by echocardiography prior to post-mortem evaluation of cardiomyocyte hypertrophy, interstitial fibrosis and inflammation by histology, RT-PCR and flow cytometry. We focussed on the oxidative and inflammatory stress pathways that contribute to cardiovascular remodelling. In particular, we demonstrate that markers of inflammation (monocyte chemoattractant protein; MCP-1), oxidative stress (urinary 8-isoprostanes) and fibrosis (connective tissue growth factor; CTGF) are significantly increased, whilst diastolic dysfunction, as indicated by prolonged isovolumic relaxation time (IVRT), is elevated in this diabetic and hypertensive mouse model. In summary, this pre-clinical mouse model provides researchers with a tool to test therapeutic strategies unique to co-morbid diabetes and hypertension, thereby facilitating the emergence of novel therapeutics to combat the cardiovascular consequences of these debilitating co-morbidities.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Hipertensión , Masculino , Ratones , Animales , Remodelación Ventricular , Miocardio/metabolismo , Hipertensión/patología , Modelos Animales de Enfermedad , Estrés Oxidativo , Fibrosis , Inflamación/patología , Morbilidad , Citratos/farmacología , Cardiomiopatías Diabéticas/patología , Diabetes Mellitus/metabolismo
3.
Int J Pharm ; 614: 121423, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34958896

RESUMEN

Inhaled transfection particles have to penetrate the mucus layer lining the airways to successfully deliver their therapeutic nucleic acid payload to target cells in the underlying epithelium. However, the in vitro models used for evaluating gene carrier efficiency often disregard this viscous defensive barrier. In this study, the two mucus-secreting cell lines NCI-H292 and Calu-3 were selected to develop a series of epithelial models displaying gradual mucus production. In NCI-H292 models, a gradual increase in the MUC5AC mucin was obtained after cell exposure to inducers. In Calu-3 models, MUC5AC production increased as a function of culture duration (3, 7, 14 days) at the air-liquid interface (ALI). Six DOPC-derived cationic lipids were designed and their pDNA delivery activity was evaluated to validate these cellular models. The strongest impairment of the lipid delivery activity was observed in the Calu-3 14-d ALI model. The MUC5AC production in this model was the greatest and the mucus layer was 20 µm thick. The mucus exhibited a solid viscoelastic behavior, and represented a major hindrance to lipoplex diffusion. The Calu-3 14-d ALI model will be highly useful for accurate evaluation of gene carriers intended for airway administration and characterization of their interactions with the mucus.


Asunto(s)
Moco , Mucosa Respiratoria , Células Epiteliales , Técnicas de Transferencia de Gen , Pulmón
4.
La Paz; SNCSB; 2000. 23 p. tab.
Monografía en Español | LIBOCS, LIBOSP | ID: biblio-1303614
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda