RESUMEN
The environmental monitoring and remediation of highly toxic inorganic arsenic species in natural water are needed for the benefit of the ecosystem. Current studies on arsenic detection and removal often employ separate materials, which exhibit blue luminescence with fluorescence quenching, making them unsuitable for biological and environmental samples. In this study, carbon dot-embedded mesoporous silica tubes functionalized with melamine are synthesized to address these limitations and enable specific and turn-on probing of inorganic arsenic. The newly synthesized material demonstrates excitation-independent yellow luminescence and can effectively detect both As (III) and As (V) at low detection limits (11 × 10-9 m, 11.2 × 10-9 m), well below the prescribed threshold limits in drinking water. It also exhibits a high adsorption capacity (≈125, 159 mg g-1 ) with fast kinetics. The material's applicability in environmental samples is validated through the successful quantification of arsenic in real samples with satisfactory recoveries. Moreover, the material shows recyclability for reuse, as demonstrated by its arsenic adsorption and desorption for several cycles under basic conditions. Additionally, the material's capability for monitoring arsenic in a biological sample (Artemia salina) is demonstrated through fluorescence imaging. The encouraging outcomes underscore the material's potential use in monitoring and mitigating arsenic in aqueous systems.
Asunto(s)
Arsénico , Arsenicales , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/análisis , Carbono , Dióxido de Silicio , Ecosistema , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Purificación del Agua/métodosRESUMEN
The performance of an innovative decentralized multistage constructed wetland (DMCW) treating institutional wastewater is studied covering three seasons. The DMCW system with Canna lily efficiently removed organics contaminants like COD and BOD, and nutrients from the wastewater, showing its dependency on meteorological factors. Overall the performance is maximum in summer and least in monsoon, with a COD removal of 85.6% in summer followed by 82.5% in winter and 61.2% in monsoon. Removal of TSS (67.7-85.5%), PO43--P (52.1-64.4%), NH4+-N (56.6-71.6%), NO3--N (47.3-63.4%) and NO2--N (62-75.4%) were achieved along with heavy metals like Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Hg and Pb. Removal of pathogens like Vibrio is >98%, E. coli 95%, Pseudomonas 99%, and Aeromonas 63% was observed. Mass removal rate of COD was maximum in summer (97.3 g/m2/d) followed by winter (78.7 g/m2/d) and monsoon (43.5 g/m2/d). Majority of organics removal during the treatment was highlighted through Gas Chromatography-Mass Spectrometry (GCMS) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed wastewater to be complex. The Canna lily accumulated various elements and oxides during the treatment with no stress on its health. The treated water quality is within the permissible limits and stands suitable for irrigational purposes. Better plant health and increased microbial diversity in the garden proves the suitability of treated water for irrigational activities. The results were validated using statistical tools like Mann-Whitney U test and principal component analysis.
Asunto(s)
Metales Pesados , Aguas Residuales , Escherichia coli , Metales Pesados/análisis , Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , HumedalesRESUMEN
In recent years, the use of probiotic bacteria has attracted the interest of the marine shrimp farming industry. However, there are certain limitations pertaining to the practical application of many commercially available probiotics. Here, a thoroughly screened optimal consortium of three indigenous sulfur probiotics was tested for antibiotic susceptibility and was found to be safe, with each culture being sensitive to all the tested antibiotics. Further, de-potash vinasse (DPV), an environmental hazard, was tested for its prebiotic potential, and its 1% (w/v) concentration was found to be effective for long-term viability (> 66 days) of the probiotic cultures and safe for Artemia. The synbiotic formulation was tested first in a lab-scale microcosm setup successfully and subsequently tried on a shrimp farm; it was observed that the product was congruent to the efficiency of a commercial probiotic regarding almost all physicochemical parameters, sulfide, nitrate-N, nitrite-N, phytoplankton sustenance, Pseudomonas count, coliform count, and heterotrophic count. In addition, it was significantly efficient in maintaining pH, reducing ammonia-N and phosphate-P, Vibrio and Aeromonas count, and a net increase in the yield of shrimp biomass by 625 kg, thus proving to be a better alternative than one of the already available remediation methods.
Asunto(s)
Penaeidae , Probióticos , Simbióticos , Vibrio , Animales , Agua , Estanques , Penaeidae/microbiologíaRESUMEN
A detailed study to generate the new normal baseline data has been carried out during nationwide lockdown (May 12 to May 16, 2020) covering sampling for ambient air, coastal water, coastal sediments, fish and bioaccumulation of heavy metals, in an around Alang, the world's biggest ship recycling yard. The lockdown data were compared with 2018 and 2019 observed data. PM10 values during lockdown were reduced by 3.75 to 4.5 times as compared with previous 2 years. Similarly, four-fold reduction of PM2.5 and SPM values was observed during lockdown. The gaseous pollutants like NO2 and O3 are within safe limit. Overall air quality index (AQI) improved significantly during lockdown. Similarly, there was drastic reduction in the majority of the nutrient parameters in the coastal water. Different heavy metal concentration in the coastal sediments samples also showed strong reduction during lockdown sampling in comparison with other two sampling. This proves that the coastal environment has its efficient self-cleaning potentials if there is considerable reduction in the anthropogenic as well as industrial activities. Diversity of phytoplankton and zooplankton also increased. The results were validated using statistical techniques like analysis of variance and least significance difference (LSD).