Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Antimicrob Chemother ; 72(5): 1415-1420, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333347

RESUMEN

Objectives: The emergence of polymyxin resistance threatens to leave clinicians with few options for combatting drug-resistant Acinetobacter baumannii . The objectives of the current investigation were to define the in vitro emergence of polymyxin resistance and identify a combination regimen capable of eradicating A. baumannii with no apparent drug susceptibilities. Methods: Two clonally related, paired, A. baumannii isolates collected from a critically ill patient who developed colistin resistance while receiving colistin methanesulfonate in a clinical population pharmacokinetic study were evaluated: an A. baumannii isolate collected before (03-149.1, polymyxin-susceptible, MIC 0.5 mg/L) and an isolate collected after (03-149.2, polymyxin-resistant, MIC 32 mg/L, carbapenem-resistant, ampicillin/sulbactam-resistant). Using the patient's unique pharmacokinetics, the patient's actual regimen received in the clinic was recreated in a hollow-fibre infection model (HFIM) to track the emergence of polymyxin resistance against 03-149.1. A subsequent HFIM challenged the pan-resistant 03-149.2 isolate against polymyxin B, meropenem and ampicillin/sulbactam alone and in two-drug and three-drug combinations. Results: Despite achieving colistin steady-state targets of an AUC 0-24 >60 mg·h/L and C avg of >2.5 mg/L, colistin population analysis profiles confirmed the clinical development of polymyxin resistance. During the simulation of the patient's colistin regimen in the HFIM, no killing was achieved in the HFIM and amplification of polymyxin resistance was observed by 96 h. Against the polymyxin-resistant isolate, the triple combination of polymyxin B, meropenem and ampicillin/sulbactam eradicated the A. baumannii by 96 h in the HFIM, whereas monotherapies and double combinations resulted in regrowth. Conclusions: To combat polymyxin-resistant A. baumannii , the triple combination of polymyxin B, meropenem and ampicillin/sulbactam holds great promise.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple , Polimixina B/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Adulto , Antibacterianos/uso terapéutico , Colistina/farmacocinética , Colistina/uso terapéutico , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Meropenem , Pruebas de Sensibilidad Microbiana , Polimixina B/uso terapéutico , Tienamicinas/farmacología , Tienamicinas/uso terapéutico
2.
Clin Pharmacol Ther ; 109(4): 1000-1020, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33576025

RESUMEN

Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of ß-lactam antibiotics and ß-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While ß-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.


Asunto(s)
Técnicas Bacteriológicas/métodos , Descubrimiento de Drogas/métodos , Farmacorresistencia Bacteriana Múltiple/fisiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Animales , Membrana Celular/fisiología , Modelos Animales de Enfermedad , Humanos , Modelos Teóricos , Proteínas de Unión a las Penicilinas/fisiología , beta-Lactamas/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda