RESUMEN
The suprachiasmatic nucleus (SCN) in rodents receives a dense innervation from serotonin neurons of the midbrain raphe. This projection overlaps the terminal field of the retinohypothalamic tract in the SCN core, the central part of the nucleus characterized by a population of vasoactive intestinal polypeptide (VIP)-containing neurons. To determine whether a similar pathway is present in primates, we carried out an immnunocytochemical investigation of the primate SCN using antisera against either serotonin (monkey) or the serotonin transporter (human). This demonstrated a dense serotonergic plexus over the SCN core in both species. As in rodents, the distribution of the serotonin innervation of the primate SCN overlaps that of the retinohypothalamic input and the VIP neuronal population. We also find a supraependymal plexus of serotonin axons in the third and lateral ventricles of the human and monkey brains that is similar in distribution, but less dense, than the one reported in rodents.
Asunto(s)
Proteínas Portadoras/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/metabolismo , Terminales Presinápticos/metabolismo , Núcleos del Rafe/metabolismo , Serotonina/metabolismo , Núcleo Supraquiasmático/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Epéndimo/citología , Epéndimo/metabolismo , Femenino , Humanos , Inmunohistoquímica , Macaca fascicularis , Masculino , Vías Nerviosas/citología , Núcleos del Rafe/citología , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Núcleo Supraquiasmático/citología , Tercer Ventrículo/citología , Tercer Ventrículo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Vías Visuales/citología , Vías Visuales/metabolismoRESUMEN
Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.
Asunto(s)
Diferenciación Celular/genética , Cromatina/metabolismo , Plasticidad Neuronal/genética , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Cromatina/genética , Proteínas Co-Represoras , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reguladores/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Proteínas Represoras/genética , Factores de Transcripción/genéticaRESUMEN
The suprachiasmatic nucleus (SCN) of the hypothalamus is a dominant circadian pacemaker in the mammalian brain controlling the rest-activity cycle and a series of physiological and endocrine functions to provide a foundation for the successful elaboration of adaptive sleep and waking behavior. The SCN is anatomically and functionally organized into two subdivisions: (1) a core that lies adjacent to the optic chiasm, comprises predominantly neurons producing vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP) colocalized with GABA and receives dense visual and midbrain raphe afferents, and (2) a shell that surrounds the core, contains a large population of arginine vasopressin (AVP)-producing neurons in its dorsomedial portion, and a smaller population of calretinin (CAR)-producing neurons dorsally and laterally, colocalized with GABA, and receives input from non-visual cortical and subcortical regions. In this paper, we present a detailed quantitative analysis of the organization of the SCN core and shell in the rat and place this in the context of the functional significance of the subdivisions in the circadian control of regulatory systems.