Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Sci Total Environ ; 926: 171779, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508254

RESUMEN

Peatlands play a crucial role in carbon (C) sequestration and biodiversity conservation. However, these environments are highly vulnerable, and Europe has lost >60 % of its peatland habitat in recent decades. Cattle grazing and trampling contribute to peatland degradation, which generally result in a shift from moss-dominated vegetation to vascular plants and in lower C sequestration rates. Overgrazing poses also a significant threat to habitat integrity and biodiversity, especially in the Alpine area, where close-to-pristine mires with high ecological integrity are becoming extremely rare. Thus, a more in depth understanding of how cattle grazing and trampling are threatening Alpine mires is strongly needed for a sustainable management and conservation of these habitats. The objective of this study was to examine the impact of grazing on the physical, chemical, and biological characteristics of peat, with a focus on diatoms. To answer such a question, seven 50-cm deep cores were collected from mires located in the Adamello-Brenta Nature Park (North of Italy) along a grazing-induced disturbance gradient. Results indicated that grazing primarily affected at least the upper 15 cm of the peat, resulting in increased density and reduced water content, due to compaction, and lower C-to­nitrogen ratio, possibly caused by both cow manure inputs and increased peat mineralization. Moreover, almost 200 diatom taxa were recorded across the 7 cores, with several of them falling under threat categories in the Red List for central Europe. The higher percentage of eutraphentic species in highly-grazed areas was related to the increase in nutrients caused by cattle manure. Finally, intense grazing increased the share of taxa that are more likely to survive in environments with unstable water availability (= aerial species). We showed that diatom data, supported by physical and chemical parameters, can be a refined tool to inform mire protection and rehabilitation.


Asunto(s)
Diatomeas , Bovinos , Animales , Suelo , Estiércol , Ecosistema , Agua
2.
Ecology ; 93(5): 1106-14, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22764496

RESUMEN

While the effects of contemporaneous local environment on species richness have been repeatedly documented, much less is known about historical effects, especially over large temporal scales. Using fen sites in the Western Carpathian Mountains with known radiocarbon-dated ages spanning Late Glacial to modern times (16 975-270 cal years before 2008), we have compiled richness data from the same plots for three groups of taxa with contrasting dispersal modes: (1) vascular plants, which have macroscopic propagules possessing variable, but rather low, dispersal abilities; (2) bryophytes, which have microscopic propagules that are readily transported long distances by air; and (3) terrestrial and freshwater mollusks, which have macroscopic individuals with slow active migration rates, but which also often possess high passive dispersal abilities. Using path analysis we tested the relationships between species richness and habitat age, area, isolation, and altitude for these groups. When only matrix-derived taxa were considered, no significant positive relation was noted between species richness and habitat size or age. When only calcareous-fen specialists were considered, however, habitat age was found to significantly affect vascular plant richness and, marginally, also bryophyte richness, whereas mollusk richness was significantly affected by habitat area. These results suggest that in inland insular systems only habitat specialist (i.e., interpatch disperser and/or relict species) richness is influenced by habitat age and/or area, with habitat age becoming more important as species dispersal ability decreases.


Asunto(s)
Biodiversidad , Moluscos/clasificación , Plantas/clasificación , Humedales , Animales , Demografía , Micorrizas , Especificidad de la Especie , Factores de Tiempo
3.
Sci Rep ; 11(1): 4438, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627718

RESUMEN

We explored the influence of climatic factors on diversity patterns of multiple taxa (lichens, bryophytes, and vascular plants) along a steep elevational gradient to predict communities' dynamics under future climate change scenarios in Mediterranean regions. We analysed (1) species richness patterns in terms of heat-adapted, intermediate, and cold-adapted species; (2) pairwise beta-diversity patterns, also accounting for its two different components, species replacement and richness difference; (3) the influence of climatic variables on species functional traits. Species richness is influenced by different factors between three taxonomic groups, while beta diversity differs mainly between plants and cryptogams. Functional traits are influenced by different factors in each taxonomic group. On the basis of our observations, poikilohydric cryptogams could be more impacted by climate change than vascular plants. However, contrasting species-climate and traits-climate relationships were also found between lichens and bryophytes suggesting that each group may be sensitive to different components of climate change. Our study supports the usefulness of a multi-taxon approach coupled with a species traits analysis to better unravel the response of terrestrial communities to climate change. This would be especially relevant for lichens and bryophytes, whose response to climate change is still poorly explored.

4.
Sci Rep ; 10(1): 12516, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719437

RESUMEN

To understand how diversity is distributed in space is a fundamental aim for optimizing future species and community conservation. We examined in parallel species richness and beta diversity components of nine taxonomic groups along a finite space, represented by pastured grasslands along an elevational gradient. Beta diversity, which is assumed to bridge local alpha diversity to regional gamma diversity was partitioned into the two components turnover and nestedness and analyzed at two levels: from the lowest elevation to all other elevations, and between neighboring elevations. Species richness of vascular plants, butterflies, beetles, spiders and earthworms showed a hump-shaped relationship with increasing elevation, while it decreased linearly for grasshoppers and ants, but increased for lichens and bryophytes. For most of the groups, turnover increased with increasing elevational distance along the gradient while nestedness decreased. With regard to step-wise beta diversity, rates of turnover or nestedness did not change notably between neighboring steps for the majority of groups. Our results support the assumption that species communities occupying the same habitat significantly change along elevation, however transition seems to happen continuously and is not detectable between neighboring steps. Our findings, rather than delineating levels of major diversity losses, indicate that conservation actions targeting at a preventive protection for species and their environment in mountainous regions require the consideration of entire spatial settings.

5.
Sci Total Environ ; 740: 140157, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32927578

RESUMEN

This study explores the factors affecting the biodiversity of diatoms, vegetation with focus on bryophytes, and invertebrates with focus on water mites, in a series of 16 spring-habitats. The springs are located primarily from the mountainous part of the Emilia-Romagna Region (Northern Apennines, Italy), and two pool-springs from agricultural and industrial lowland locations. Overall, data indicate that biological diversity (Shannon-Wiener, α-diversity) within individual springs was relatively low, e.g.: Sdiatoms = 0-46, Swater-mites = 0-11. However, when examined at the regional scale, they hosted a very high total number of taxa (γ-diversity; Sdiatoms = 285, Swater-mites = 40), including several new or putatively-new species, and many Red-List taxa. This pattern suggested there is high species turnover among springs, as well as high distinctiveness of individual spring systems. A key goal was to assess the hydrogeological and hydrochemical conditions associated with this high regional-pool species richness, and to provide a guide to future conservation strategies. There was a striking variety of geological conditions (geodiversity, captured mainly with lithotype and aquifer structure) across the study region, which led to wide variation in the hydrosphere, especially in conductivity and pH. Agriculture and industrial activities (anthroposphere) in the lowlands resulted in nutrient enrichment and other forms of pollution. Across all 16 spring-systems, several hydrogeological conditions most strongly influenced the presence or absence of particular biota and were determinants of species importance: spring-head morphology, hydroperiod, discharge, current velocity, and elemental concentration. These findings have important practical consequences for conservation strategies. Our data show that it is imperative to protect entire regional groups of springs, including representatives of the different ecomorphological spring types, lithologies, and degrees of human influence. These findings suggest that springs, when studied from an ecohydrogeological perspective, are excellent systems in which to further investigate and understand geo-biodiversity relationships.


Asunto(s)
Ecosistema , Manantiales Naturales , Animales , Biodiversidad , Invertebrados , Italia
6.
Oecologia ; 160(3): 471-82, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19352717

RESUMEN

The relative importance of positive and negative interaction in species assemblages is thought to be dependent on the harshness of the physical environment. I studied the consistency of this prediction in a field experiment using growth of the target species Warnstorfia exannulata as influenced by the presence or absence of two adjacent species, Sphagnum warnstorfii and Scapania undulata. In particular, I focused on the mechanism by which colony-colony interactions occur, elucidating how the balance of positive and negative interactions changes along a water gradient. Because the natural fluctuations of the environment modify the water gradient, it was expected that the competitive hierarchies of the species would not remain consistent over time. Results indicated that the different hydrological properties of the colonies, thought to be the necessary condition for the appearance of species interactions, were not sufficient to explain the outcome of the species interactions. The switch from competition to facilitation under more stressful conditions was not confirmed along a water stress gradient. In addition, natural climatic fluctuations, by affecting the length of the water gradient, changed the competitive hierarchies of the species on a seasonal scale.


Asunto(s)
Briófitas/crecimiento & desarrollo , Ecosistema , Estaciones del Año , Estrés Fisiológico/fisiología , Agua/metabolismo , Análisis de Varianza , Demografía , Italia , Dinámica Poblacional
7.
Sci Total Environ ; 487: 110-6, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24784735

RESUMEN

In the Alps, larch grasslands form one of the most pleasing aspects of the landscape. However, their effectiveness in contributing to biodiversity conservation may depend on the intensity of their management. We used a multi-taxon approach to evaluate the effects of the intensification of management practices and those of abandonment on the biodiversity of the main autotrophic organisms hosted in this habitat, including vascular plants, bryophytes, and lichens. The study was carried out in the eastern part of South Tyrol, in the Italian Alps, where the diversity patterns of these three organismal groups were compared among intensively managed, extensively managed, and abandoned stands. The management intensity was found to strongly influence the biodiversity of the organisms, with a general pattern indicating the best conditions in extensively managed stands. Both abandonment and management intensification were detrimental to biodiversity through different mechanisms that led to species loss or to major shifts in species composition. However, the most negative effects were related to management intensification, mainly due to the high nitrogen supply, providing evidence for the increasing impact of eutrophication on Alpine environments.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Briófitas/clasificación , Ambiente , Líquenes/clasificación
8.
PLoS One ; 9(7): e103300, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25054806

RESUMEN

Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species' richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species' occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as 'montane forest dwellers', e.g. the endemic Sanje mangabey (Cercocebus sanjei), and 'lowland forest dwellers', e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Antílopes , Cercocebus , Conservación de los Recursos Naturales , Bosques , Mamíferos , Dinámica Poblacional , Tanzanía , Clima Tropical
9.
J Phycol ; 48(6): 1530-4, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27010002

RESUMEN

Bangia atropurpurea (Mertens ex Roth) C. Agardh is a freshwater red alga species that is distributed worldwide. B. atropurpurea is highly adaptable due to its stress-tolerance, which ensures survival under desiccation periods and under radiation extremes typical of the supra- and upper eulittoral zones. Whereas a number of previous investigations addressed some of the physiological and biochemical traits involved in stress-tolerance, we studied the spatial arrangement of the mature (multiseriate) and immature (uniseriate) filaments and of selected bioorganic compounds along a gradient defined by distance from the waterline. Substantial physiological and biochemical differences were previously observed among phenological stages in the marine environment. In this study, we showed a nonrandom spatial structure of both phenological stages and photosynthetic pigments and photoprotective compounds, R-phycocyanin and R-phycoerythrin along the supralittoral-eulittoral gradient. This observed pattern strongly suggests a complex interplay between physio-morphological regulation and spatial arrangement of mature and immature filaments in conferring the typical stress tolerance of B. atropurpurea.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda