Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genet Med ; 26(4): 101070, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38376505

RESUMEN

Clinical cytogenomic studies of solid tumor samples are critical to the diagnosis, prognostication, and treatment selection for cancer patients. An overview of current cytogenomic techniques for solid tumor analysis is provided, including standards for sample preparation, clinical and technical considerations, and documentation of results. With the evolving technologies and their application in solid tumor analysis, these standards now include sequencing technology and optical genome mapping, in addition to the conventional cytogenomic methods, such as G-banded chromosome analysis, fluorescence in situ hybridization, and chromosomal microarray analysis. This updated Section E6.7-6.12 supersedes the previous Section E6.5-6.8 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Standards for Clinical Genetics Laboratories.


Asunto(s)
Genética Médica , Neoplasias , Humanos , Estados Unidos , Laboratorios , Hibridación Fluorescente in Situ/métodos , Aberraciones Cromosómicas , Neoplasias/diagnóstico , Neoplasias/genética , Cromosomas , Genómica
2.
J Physiol ; 601(23): 5367-5389, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37883018

RESUMEN

Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV ß1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV ß1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.


Asunto(s)
Epilepsia , Humanos , Niño , Epilepsia/genética , Neuronas/fisiología , Transducción de Señal , Membrana Celular , Fenotipo , Canal de Potasio Kv.1.2/genética
3.
Genet Med ; 24(8): 1774-1780, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567594

RESUMEN

PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas de Unión al ARN/genética , Niño , Discapacidades del Desarrollo/genética , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
4.
Genet Med ; 23(4): 661-668, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33420346

RESUMEN

PURPOSE: To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.


Asunto(s)
Enanismo , Discapacidad Intelectual , Ubiquitina-Proteína Ligasas/genética , Animales , Niño , Discapacidades del Desarrollo/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Hipotonía Muscular , Fenotipo , Síndrome , Secuenciación del Exoma
5.
Platelets ; 32(8): 1108-1112, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33400601

RESUMEN

Congenital macrothrombocytopenia is a genetically heterogeneous group of rare disorders. We herein report a large Chinese family presented with phenotypic variability involving thrombocytopenia and/or giant platelets. Whole genome sequencing (WGS) of the proband and one of his affected brothers identified a potentially pathogenic c.952 C > T heterozygous variant in the TUBB1 gene. This p.R318W ß1-tubulin variant was also identified in three additional siblings and five members of the next generation. These findings were consistent with an autosomal dominant inheritance with incomplete penetrance. Moreover, impaired platelet agglutination in response to ristocetin was detected in the patient's brother. Half of the family members harboring the p.R318W mutation displayed significantly decreased external release of p-selectin by stimulated platelets. The p.R318W ß1-tubulin mutation was identified for the first time in a Chinese family with congenital macrothrombocytopenia using WGS as an unbiased sequencing approach. Affected individuals within the family demonstrated impaired platelet aggregation and/or release functions.


Asunto(s)
Trombocitopenia/congénito , Trombocitopenia/genética , Tubulina (Proteína)/metabolismo , Adolescente , Pueblo Asiatico , Humanos , Masculino , Secuenciación Completa del Genoma
7.
PLoS Genet ; 7(7): e1002145, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21765815

RESUMEN

Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.


Asunto(s)
Encéfalo/embriología , Factores de Transcripción Forkhead/genética , Redes Reguladoras de Genes , Neuritas/metabolismo , Proteínas Represoras/genética , Animales , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cuerpo Estriado/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Cultivo Primario de Células , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Leuk Res ; 136: 107433, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154193

RESUMEN

Myelodysplastic neoplasms (MDS) are clonal disorders of bone marrow failure exhibiting a variable risk of progression to acute myeloid leukemia. MDS exhibit certain prognostic genetic or cytogenetic abnormalities, an observation that has led to both the pathologic reclassification of MDS in the 2022 World Health Organization (WHO) and International Consensus Classification (ICC) systems, as well as to an updated prognostic schema, the Molecular International Prognostic Scoring System (IPSS-M). This single-institution study characterized the molecular patterns and clinical outcomes associated with the 2022 WHO and ICC classification schemas to assess their clinical utility. Strikingly, with the exception of one individual, all 210 patients in our cohort were classified into analogous categories by the two pathologic/diagnostic schemas. Most patients (70%) were classified morphologically while the remaining 30% had genetically classified disease by both criteria. Prognostic risk, as assessed by the IPSS-M score was highest in patients with MDS with biallelic/multi-hit TP53 mutations and lowest in pts with MDS-SF3B1. Median leukemia-free survival (LFS) was shortest for those with MDS with biallelic/multi-hit TP53 (0.7 years) and longest for those with MDS with low blasts (LFS not reached). These data demonstrate the clear ability of the 2022 WHO and ICC classifications to organize MDS patients into distinct prognostic risk groups and further show that both classification systems share more similarities than differences. Incorporation of the IPSS-M and IPSS-R features provide additive prognostic and survival components to both the WHO and ICC classifications, which together enhance their utility for evaluating and treating MDS patients.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Pronóstico , Consenso , Síndromes Mielodisplásicos/patología , Leucemia Mieloide Aguda/genética , Organización Mundial de la Salud
9.
NPJ Genom Med ; 9(1): 15, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409289

RESUMEN

Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.

10.
Front Oncol ; 14: 1408238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903717

RESUMEN

Introduction: Fluorescence in situ hybridization (FISH) is an essential ancillary study used to identify clinically aggressive subsets of large B-cell lymphomas that have MYC, BCL2, or BCL6 rearrangements. Small-volume biopsies such as fine needle aspiration biopsy (FNAB) and core needle biopsy (CNB) are increasingly used to diagnose lymphoma and obtain material for ancillary studies such as FISH. However, the performance of FISH in small biopsies has not been thoroughly evaluated or compared to surgical biopsies. Methods: We describe the results of MYC, BCL2, and BCL6 FISH in a series of 222 biopsy specimens, including FNAB with cell blocks, CNBs, and surgical excisional or incisional biopsies from 208 unique patients aggregated from 6 academic medical centers. A subset of patients had FNAB followed by a surgical biopsy (either CNB or excisional biopsy) obtained from the same or contiguous anatomic site as part of the same clinical workup; FISH results were compared for these paired specimens. Results: FISH had a low hybridization failure rate of around 1% across all specimen types. FISH identified concurrent MYC and BCL2 rearrangements in 20 of 197 (10%) specimens and concurrent MYC and BCL6 rearrangements in 3 of 182 (1.6%) specimens. The paired FNAB and surgical biopsy specimens did not show any discrepancies for MYC or BCL2 FISH; of the 17 patients with 34 paired cytology and surgical specimens, only 2 of the 49 FISH probes compared (4% of all comparisons) showed any discrepancy and both were at the BCL6 locus. One discrepancy was due to necrosis of the CNB specimen causing a false negative BCL6 FISH result when compared to the FNAB cell block that demonstrated a BCL6 rearrangement. Discussion: FISH showed a similar hybridization failure rate in all biopsy types. Ultimately, MYC, BCL2, or BCL6 FISH showed 96% concordance when compared across paired cytology and surgical specimens, suggesting FNAB with cell block is equivalent to other biopsy alternatives for evaluation of DLBCL or HGBCL FISH testing.

11.
Neurogenetics ; 14(1): 11-22, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23334463

RESUMEN

Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41% of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation.


Asunto(s)
Enfermedades de los Ganglios Basales/genética , Calcinosis/genética , Mutación , Enfermedades Neurodegenerativas/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Adulto , Anciano , Secuencia de Aminoácidos , Estudios de Cohortes , Análisis Mutacional de ADN , Familia , Femenino , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/fisiología , Estudios Retrospectivos
12.
Nat Struct Mol Biol ; 14(6): 564-7, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17460694

RESUMEN

Activation of the Fanconi anemia (FA) DNA damage-response pathway results in the monoubiquitination of FANCD2, which is regulated by the nuclear FA core ubiquitin ligase complex. A FANCD2 protein sequence-based homology search facilitated the discovery of FANCI, a second monoubiquitinated component of the FA pathway. Biallelic mutations in the gene coding for this protein were found in cells from four FA patients, including an FA-I reference cell line.


Asunto(s)
Reparación del ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Biología Computacional , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia de ADN , Ubiquitinación
13.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395838

RESUMEN

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

14.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35347328

RESUMEN

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Mapeo Cromosómico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Secuenciación Completa del Genoma/métodos
15.
Nat Commun ; 13(1): 5107, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042219

RESUMEN

The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Genoma Viral , Estudio de Asociación del Genoma Completo , Humanos , SARS-CoV-2/genética
16.
Cancers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34944883

RESUMEN

Children with chronic myeloid leukemia (CML) tend to present with higher white blood counts and larger spleens than adults with CML, suggesting that the biology of pediatric and adult CML may differ. To investigate whether pediatric and adult CML have unique molecular characteristics, we studied the transcriptomic signature of pediatric and adult CML CD34+ cells and healthy pediatric and adult CD34+ control cells. Using high-throughput RNA sequencing, we found 567 genes (207 up- and 360 downregulated) differentially expressed in pediatric CML CD34+ cells compared to pediatric healthy CD34+ cells. Directly comparing pediatric and adult CML CD34+ cells, 398 genes (258 up- and 140 downregulated), including many in the Rho pathway, were differentially expressed in pediatric CML CD34+ cells. Using RT-qPCR to verify differentially expressed genes, VAV2 and ARHGAP27 were significantly upregulated in adult CML CD34+ cells compared to pediatric CML CD34+ cells. NCF1, CYBB, and S100A8 were upregulated in adult CML CD34+ cells but not in pediatric CML CD34+ cells, compared to healthy controls. In contrast, DLC1 was significantly upregulated in pediatric CML CD34+ cells but not in adult CML CD34+ cells, compared to healthy controls. These results demonstrate unique molecular characteristics of pediatric CML, such as dysregulation of the Rho pathway, which may contribute to clinical differences between pediatric and adult patients.

17.
Am J Hum Genet ; 81(6): 1232-50, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17999362

RESUMEN

We previously discovered that mutations of the human FOXP2 gene cause a monogenic communication disorder, primarily characterized by difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech. Affected people have deficits in expressive and receptive linguistic processing and display structural and/or functional abnormalities in cortical and subcortical brain regions. FOXP2 provides a unique window into neural processes involved in speech and language. In particular, its role as a transcription factor gene offers powerful functional genomic routes for dissecting critical neurogenetic mechanisms. Here, we employ chromatin immunoprecipitation coupled with promoter microarrays (ChIP-chip) to successfully identify genomic sites that are directly bound by FOXP2 protein in native chromatin of human neuron-like cells. We focus on a subset of downstream targets identified by this approach, showing that altered FOXP2 levels yield significant changes in expression in our cell-based models and that FOXP2 binds in a specific manner to consensus sites within the relevant promoters. Moreover, we demonstrate significant quantitative differences in target expression in embryonic brains of mutant mice, mediated by specific in vivo Foxp2-chromatin interactions. This work represents the first identification and in vivo verification of neural targets regulated by FOXP2. Our data indicate that FOXP2 has dual functionality, acting to either repress or activate gene expression at occupied promoters. The identified targets suggest roles in modulating synaptic plasticity, neurodevelopment, neurotransmission, and axon guidance and represent novel entry points into in vivo pathways that may be disturbed in speech and language disorders.


Asunto(s)
Encéfalo/fisiología , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Trastornos del Lenguaje/genética , Mutación , Regiones Promotoras Genéticas , Trastornos del Habla/genética , Encéfalo/fisiopatología , Línea Celular , Línea Celular Tumoral , Amplificación de Genes , Humanos , Riñón , Neuronas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Transfección
18.
Am J Hum Genet ; 81(6): 1144-57, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17999357

RESUMEN

Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes.


Asunto(s)
Ganglios Basales/fisiología , Encéfalo/fisiología , Factores de Transcripción Forkhead/genética , Lóbulo Frontal/fisiología , Lenguaje , Habla/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/crecimiento & desarrollo , Desarrollo Embrionario , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Pan troglodytes , Fragmentos de Péptidos , Reacción en Cadena de la Polimerasa , Proteínas Represoras/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda