Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 286(44): 38533-38545, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21900252

RESUMEN

Copper is reported to promote and prevent aggregation of prion protein. Conformational and functional consequences of Cu(2+)-binding to prion protein (PrP) are not well understood largely because most of the Cu(2+)-binding studies have been performed on fragments and truncated variants of the prion protein. In this context, we set out to investigate the conformational consequences of Cu(2+)-binding to full-length prion protein (PrP) by isothermal calorimetry, NMR, and small angle x-ray scattering. In this study, we report altered aggregation behavior of full-length PrP upon binding to Cu(2+). At physiological temperature, Cu(2+) did not promote aggregation suggesting that Cu(2+) may not play a role in the aggregation of PrP at physiological temperature (37 °C). However, Cu(2+)-bound PrP aggregated at lower temperatures. This temperature-dependent process is reversible. Our results show two novel intra-protein interactions upon Cu(2+)-binding. The N-terminal region (residues 90-120 that contain the site His-96/His-111) becomes proximal to helix-1 (residues 144-147) and its nearby loop region (residues 139-143), which may be important in preventing amyloid fibril formation in the presence of Cu(2+). In addition, we observed another novel interaction between the N-terminal region comprising the octapeptide repeats (residues 60-91) and helix-2 (residues 174-185) of PrP. Small angle x-ray scattering studies of full-length PrP show significant compactness upon Cu(2+)-binding. Our results demonstrate novel long range inter-domain interactions of the N- and C-terminal regions of PrP upon Cu(2+)-binding, which might have physiological significance.


Asunto(s)
Cobre/química , Priones/química , Animales , Sitios de Unión , Calorimetría/métodos , Histidina/química , Humanos , Espectroscopía de Resonancia Magnética/métodos , Ratones , Conformación Molecular , Enfermedades por Prión/metabolismo , Estructura Terciaria de Proteína , Dispersión de Radiación , Espectrofotometría/métodos , Temperatura , Rayos X
2.
J Mol Biol ; 342(2): 605-17, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15327959

RESUMEN

Chaperonin-60s are large double ring oligomeric proteins with a central cavity where unfolded polypeptides undergo productive folding. In conjunction with their co-chaperonin, Chaperonin-60s bind non-native polypeptides and facilitate their refolding in an ATP-dependent manner. The ATPase activity of Chaperonin-60 is tightly regulated by the 10 kDa co-chaperonin. In contrast to most other bacterial species, Mycobacterium tuberculosis genome carries a duplicate set of cpn60 genes, one of which occurs on the groESL operon (cpn60.1), while the other is separately arranged on the chromosome (cpn60.2). Biophysical characterization of the mycobacterial proteins showed that these proteins exist as lower oligomers and not tetradecamers, an unexpected property much different from the other known Chaperonin-60s. Failure of the M.tuberculosis chaperonins to oligomerize can be attributed to amino acid mutations at the oligomeric interface. Rates of ATP hydrolysis of the M.tuberculosis chaperonins showed that these proteins possess a very weak ATPase activity. Both the M.tuberculosis chaperonins were partially active in refolding substrate proteins. Interestingly, their refolding activity was seen to be independent of the co-chaperonin and ATP. We hypothesize that the ATP independent chaperones might offer benefit to the pathogen by promoting its existence in the latent phase of its life cycle.


Asunto(s)
Proteínas Bacterianas/química , Chaperonina 60/química , Chaperoninas/química , Mycobacterium tuberculosis/química , Alanina/metabolismo , Proteínas Bacterianas/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chaperoninas/metabolismo , Dicroismo Circular , Citrato (si)-Sintasa/metabolismo , Ácido Glutámico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pliegue de Proteína
3.
Protein Sci ; 12(6): 1262-70, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12761397

RESUMEN

Structural perturbation of alpha-crystallin is shown to enhance its molecular chaperone-like activity in preventing aggregation of target proteins. We demonstrate that arginine, a biologically compatible molecule that is known to bind to the peptide backbone and negatively charged side-chains, increases the chaperone-like activity of calf eye lens alpha-crystallin as well as recombinant human alphaA- and alphaB-crystallins. Arginine-induced increase in the chaperone activity is more pronounced for alphaB-crystallin than for alphaA-crystallin. Other guanidinium compounds such as aminoguanidine hydrochloride and guanidine hydrochloride also show a similar effect, but to different extents. A point mutation, R120G, in alphaB-crystallin that is associated with desmin-related myopathy, results in a significant loss of chaperone-like activity. Arginine restores the activity of mutant protein to a considerable extent. We have investigated the effect of arginine on the structural changes of alpha-crystallin by circular dichroism, fluorescence, and glycerol gradient sedimentation. Far-UV CD spectra show no significant changes in secondary structure, whereas near-UV CD spectra show subtle changes in the presence of arginine. Glycerol gradient sedimentation shows a significant decrease in the size of alpha-crystallin oligomer in the presence of arginine. Increased exposure of hydrophobic surfaces of alpha-crystallin, as monitored by pyrene-solubilization and ANS-fluorescence, is observed in the presence of arginine. These results show that arginine brings about subtle changes in the tertiary structure and significant changes in the quaternary structure of alpha-crystallin and enhances its chaperone-like activity significantly. This study should prove useful in designing strategies to improve chaperone function for therapeutic applications.


Asunto(s)
Arginina/farmacología , Cristalinas/química , Animales , Bovinos , Centrifugación por Gradiente de Densidad , Dicroismo Circular , Cristalinas/metabolismo , Ditiotreitol , Guanidina/farmacología , Insulina/química , Insulina/metabolismo , Conformación Proteica/efectos de los fármacos , Pirenos/química , Solubilidad , Espectrometría de Fluorescencia , Factores de Tiempo
4.
PLoS One ; 8(11): e80404, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312215

RESUMEN

Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant.


Asunto(s)
Acuaporinas/metabolismo , Proteínas del Ojo/metabolismo , Estrés Fisiológico , Temperatura , alfa-Cristalinas/metabolismo , Animales , Acuaporinas/química , Bovinos , Proteínas del Ojo/química , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Termodinámica , alfa-Cristalinas/química , alfa-Cristalinas/genética
5.
Free Radic Biol Med ; 51(3): 755-62, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21658443

RESUMEN

Oxidative stress, Cu(2+) homeostasis, and small heat shock proteins (sHsp's) have important implications in several neurodegenerative diseases. The ubiquitous sHsp αB-crystallin is an oligomeric protein that binds Cu(2+). We have investigated the relative contributions of the N- and C-terminal (C-TDαB-crystallin) domains of αB-crystallin to its Cu(2+)-binding and redox-attenuation properties and mapped the Cu(2+)-binding regions. C-TDαB-crystallin binds Cu(2+) with slightly less affinity and inhibits Cu(2+)-catalyzed, ascorbate-mediated generation of ROS to a lesser extent than αB-crystallin. [Cu(2+)]/[subunit] stoichiometries for redox attenuation by αB-crystallin and C-TDαB-crystallin are 5 and 2, respectively. Both αB-crystallin and C-TDαB-crystallin also inhibit the Fenton reaction of hydroxyl radical formation. Trypsinization of αB-crystallin bound to a Cu(2+)-NTA column and MALDI-TOF analysis of column-bound peptides yielded three peptides located in the N-terminal domain, and in-solution trypsinization of αB-crystallin followed by Cu(2+)-NTA column chromatography identified four additional Cu(2+)-binding peptides located in the C-terminal domain. Thus, Cu(2+)-binding regions are distributed in the N- and C-terminal domains. Small-angle X-ray scattering and sedimentation-velocity measurements indicate quaternary structural changes in αB-crystallin upon Cu(2+) binding. Our study indicates that an oligomer of αB-crystallin can sequester a large number (~150) of Cu(2+) ions. It acts like a "Cu(2+) sponge," exhibits redox attenuation of Cu(2+), and has potential roles in Cu(2+) homeostasis and in preventing oxidative stress.


Asunto(s)
Cobre/química , Proteínas de Choque Térmico Pequeñas/química , Fragmentos de Péptidos/química , Especies Reactivas de Oxígeno/química , Cadena B de alfa-Cristalina/química , Cobre/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Ingeniería de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína/genética , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
6.
J Biol Chem ; 279(53): 55760-9, 2004 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-15494414

RESUMEN

Hsp33, an Escherichia coli cytosolic chaperone, is inactive under normal conditions but becomes active upon oxidative stress. It was previously shown to dimerize upon activation in a concentration- and temperature-dependent manner. This dimer was thought to bind to aggregation-prone target proteins, preventing their aggregation. In the present study, we report small angle x-ray scattering (SAXS), steady state and time-resolved fluorescence, gel filtration, and glutaraldehyde cross-linking analysis of full-length Hsp33. Our circular dichroism and fluorescence results show that there are significant structural changes in oxidized Hsp33 at different temperatures. SAXS, gel filtration, and glutaraldehyde cross-linking results indicate, in addition to the dimers, the presence of oligomeric species. Oxidation in the presence of physiological salt concentration leads to significant increases in the oligomer population. Our results further show that under conditions that mimic the crowded milieu of the cytosol, oxidized Hsp33 exists predominantly as an oligomeric species. Interestingly, chaperone activity studies show that the oligomeric species is much more efficient compared with the dimers in preventing aggregation of target proteins. Taken together, these results indicate that in the cell, Hsp33 undergoes conformational and quaternary structural changes leading to the formation of oligomeric species in response to oxidative stress. Oligomeric Hsp33 thus might be physiologically relevant under oxidative stress.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/fisiología , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiología , Acrilamida/química , Cromatografía en Gel , Reactivos de Enlaces Cruzados/farmacología , Cristalografía por Rayos X , Dimerización , Electroforesis en Gel de Poliacrilamida , Glutaral/química , Cinética , Modelos Moleculares , Estrés Oxidativo , Oxígeno/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Dispersión de Radiación , Cloruro de Sodio/química , Espectrometría de Fluorescencia , Temperatura , Factores de Tiempo , Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda